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Abstract

Grammatical features across human lan-
guages show intriguing correlations often at-
tributed to learning biases in humans. How-
ever, empirical evidence has been limited
to experiments with highly simplified arti-
ficial languages, and whether these correla-
tions arise from domain-general or language-
specific biases remains a matter of debate.
Language models (LMs) provide an oppor-
tunity to study artificial language learning at a
large scale and with a high degree of natural-
ism. In this paper, we begin with an in-depth
discussion of how LMs allow us to better de-
termine the role of domain-general learning
biases in language universals. We then as-
sess learnability differences for LMs resulting
from typologically plausible and implausible
languages closely following the word-order
“universals” identified by linguistic typolo-
gists. We conduct a symmetrical cross-lingual
study training and testing LMs on an array of
highly naturalistic but counterfactual versions
of the English (head-initial) and Japanese
(head-final) languages. Compared to simi-
lar work, our datasets are more naturalistic
and fall closer to the boundary of plausibility.
Our experiments show that these LMs are of-
ten slower to learn these subtly implausible
languages, while ultimately achieving similar
performance on some metrics regardless of
typological plausibility. These findings lend
credence to the conclusion that LMs do show
some typologically-aligned learning prefer-
ences, and that the typological patterns may
result from, at least to some degree, domain-
general learning biases.

https://github.com/sally-xu-42/
Typological_Universals

1 Introduction

A fundamental goal in linguistics is to elucidate
the universal properties underlying attested natural

˚Work conducted partially at ETH Zürich.

languages and to explain why some conceivable
grammars but not others are widely attested. Many
typological universals and tendencies have been
identified (Greenberg, 1963; Barwise and Cooper,
1988; Dryer, 1992; Hyman, 2008), but their causes
are more elusive. There is disagreement over
whether typological patterns are caused by a learn-
ing bias that is language-specific (Chomsky, 1965)
or domain-general (Culbertson and Kirby, 2016),
or even whether such a bias is the cause at all (Hahn
et al., 2020). This debate has been difficult to re-
solve because we cannot manipulate variables dur-
ing acquisition of a child’s first language. However,
language models (LMs) have recently been advo-
cated for as a convenient model for human learners
that can enable large-scale controlled experiments
on language acquisition (Warstadt, 2022).

Relatedly, a lively literature on counterfactual
language learning in LMs has developed (Ravfogel
et al., 2019; Hahn et al., 2020; White and Cot-
terell, 2021; Clark et al., 2023; Kallini et al., 2024;
Kuribayashi et al., 2024, i.a.), sparking some de-
bate. Chomsky et al. (2023) criticized neural lan-
guage models (LMs) as having little consequence
for linguistic theory precisely because they can
putatively learn both possible and impossible lan-
guages (Mitchell and Bowers, 2020). In response,
Kallini et al. (2024) performed a set of experiments
to test neural LMs’ learnability of data with uncon-
troversially impossible properties as a natural lan-
guage (e.g., lacking hierarchical structure), finding
instead that LMs do indeed struggle with learning
typologically impossible languages.

In this paper, we advance these debates by testing
the learnability of typologically dispreferred lan-
guages that fall closer to the boundary of possibility.
The typological tendencies we study are those fa-
mously enumerated by Greenberg (1963) and sub-
sequently refined based on larger-scale typological
studies (Dryer, 1992). For example, languages
with dominant subject-verb-object (SVO) order
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Correlation Pair Example

Original
DET NOUN AUX SCONJ DET NOUN ADP NOUN AUX VERB ADP PROPN ADP PROPN
The fact is that the season of strawberries is running from July to August.

root

det nsubj

cop*
mark

det

nsubj
nmod

case aux
obl

obl

case case

<V, O>
DET NOUN AUX SCONJ DET NOUN ADP NOUN ADP PROPN ADP PROPN AUX VERB
The fact is that the season of strawberries to August from July is running.

obl
obl

<Adp, NP>
DET NOUN AUX SCONJ DET NOUN NOUN ADP AUX VERB PROPN ADP PROPN ADP
The fact is that the season strawberries of is running July from August to.

casecasecase

<Cop, Pred>
DET NOUN SCONJ DET NOUN ADP NOUN AUX VERB ADP PROPN ADP PROPN AUX
The fact that the season of strawberries is running from July to August is.

cop*

<Aux, V>
DET NOUN AUX SCONJ DET NOUN ADP NOUN VERB ADP PROPN ADP PROPN AUX
The fact is that the season of strawberries running from July to August is.

aux

<Noun, Genitive>
DET NOUN AUX SCONJ DET ADP NOUN NOUN VERB ADP PROPN ADP PROPN AUX
The fact is that the of strawberries season running from July to August is.

nmod

Table 1: Illustrative examples of each of our counterfactual variants of English. Head phrases are colored
red, and dependent phrases are colored blue. In the <V, O> example, we do not swap the copula and
predicate due to readability, but these elements would be swapped in the actual dataset. The <V, O>
example demonstrates the reflective swapping (H D1 D2 Ñ D2 D1 H) explained in §4.1.

overwhelmingly have prepositions, while subject-
object-verb (SOV) languages tend to have postposi-
tions. While previous work cited above has tested
learnability of artificial languages with LMs, our
approach to constructing counterfactual corpora
has a unique combination of properties: We aim to
maximize naturalness by manipulating pre-existing
natural language corpora and by iteratively anno-
tating the counterfactual data and identifying and
correcting corner cases. We also target the decision
boundary between typologically plausible and im-
plausible languages by individually manipulating
one specific grammatical property in each counter-
factual corpus. Finally, we balance biases due to
the source language by symmetrically applying this
procedure to a head-initial language (English) and
a head-final language (Japanese).

In our experiments, we test the learnability of
two types of LMs (autoregressive and masked)
from scratch on each of our counterfactual lan-
guages. We evaluate learnability from multiple
perspectives: (i) perplexity per token on the entire
corpus, (ii) preferences on minimal pairs targeting
the manipulated feature; and (iii) broad syntactic
tests (BLiMP, Warstadt et al., 2020; and JBLiMP,
Someya and Oseki, 2023). Our experimental re-
sults show that LMs often struggle to learn counter-
factual, typologically implausible languages rela-
tive to minimally different natural languages. Thus

we extend the findings of Kallini et al. (2024) on
possible vs. impossible languages even closer to
the boundary between plausible vs. implausible
languages. While we cannot entirely rule out con-
founds due to errors introduced in the creation of
counterfactual corpora, these findings have impor-
tant implications if they prove to be robust. We
also argue, contra Chomsky et al. (2023) and in-
spired by other recent arguments (Linzen, 2019;
Warstadt and Bowman, 2022; Wilcox et al., 2023;
Constantinescu et al., 2024) that learnability results
from LMs can have important implications for our
understanding of human language: If Transformers,
which lack language-specific learning biases, show
a preference for typologically plausible languages,
it is likely that humans have a similar learning pref-
erence as a result of domain-general learning biases.
Our results tentatively support this conclusion —
language-specific bias is not necessary, at least as
a minimum requirement, to distinguish between ty-
pologically plausible and implausible word orders,
pointing to a potential new line of evidence on a
long-standing debate about the origins of linguistic
typological patterns.

2 Background

2.1 Typological Tendencies
What are all the conceivable grammars that human
language could have? While this might seem like



an unanswerable question, linguistic theory gives
us a particular kind of answer: One of the key
insights of modern linguistics is that natural lan-
guage grammars can be viewed as instantiations
of formal languages (Chomsky, 1956). Under this
view, it becomes clear that there are conceivable
classes of formal languages – for example the reg-
ular languages – to which no natural language be-
longs. But decades of research have shown that hu-
man languages occupy a much harder-to-define re-
gion within the high-dimensional space of possible
grammars (Newmayer, 2005; Chomsky and Las-
nik, 1993). Many generalizations have been made
about the space of possible human languages, in-
cluding generalizations about syntactic categories
(Chomsky, 1965), quantifiers (Barwise and Cooper,
1988), and phonology (Hyman, 2008), to name just
a few. While some of these generalizations are true
universals that no human language violates—for
instance, no language has rules that require count-
ing surface positions greater than two (Newmayer,
2005)—other generalizations are merely correla-
tions of features that occur far more frequently than
if features were sampled independently at random.
Thus, we can distinguish between impossible and
implausible languages.

In the latter category, Greenberg (1963) proposed
a list of several dozen word order and morphologi-
cal correlations based on a survey of 30 languages;
for example, “In languages with prepositions, the
genitive almost always follows the governing noun,
while in languages with postpositions it almost al-
ways precedes.” Subsequently, Dryer (1992) for-
mulated a list of correlation pairs, that is, a list
of pairs of morphosyntactic categories H and D1

that tend to have the same relative ordering as the
dominant order of the verb and object, respectively,
across a sample of 625 languages. Following Cul-
bertson and Newport (2015) we refer to languages
(including most human languages) that follow these
typological correlations as harmonic (i.e., plausi-

1Syntacticians disagree on the correct generalization that
characterizes these correlation pairs (Hawkins, 1983; Dryer,
1992; Kayne, 1994), so there is no entirely theory-neutral
description, perhaps besides “verb-patterners” and “object-
patterners”. As suggested by our notation, the H elements that
pattern with the verb tend to be functional heads or lexical
heads, while the D elements that pattern with the object tend to
be phrasal arguments or dependents. For example, the adposi-
tion is the functional head of an adpositional phrase. While we
tend to refer to these elements as heads and dependents, our
study is predicated only on the existence of these correlation
pairs, not the correct theoretical analysis.

ble), while languages that violate them are non-
harmonic (i.e., implausible). A subset of these
correlation pairs that we focus on in this paper is
listed in Table 1.

2.2 Learnability of Implausible Languages

Learnability has long been proposed as a primary
mechanism behind typological universals and ten-
dencies such as word order harmony. This mech-
anism has an appealing story: Language evolves
through re-analysis by child learners (Peyraube,
1912; Cournane, 2017), and re-analysis tends to
favor easier-to-learn grammars, leading them to be-
come more frequent on the scale of generations
(Kirby et al., 2008). But why are some gram-
mars harder or easier to learn in the first place?
Some scholars propose that humans have language-
specific biases. For instance, Chomsky’s (1965)
theory of Universal Grammar posited that hu-
mans have an innate language acquisition device
that biases the learning of certain grammars. This
theory was later refined into the theory of Princi-
ples and Parameters (Chomsky and Lasnik, 1993),
which – most relevant to the present discussion –
included a Head Parameter determining whether
complements come to the left or right of their heads
(p. 35). Other scholars favor the view that domain-
general biases are sufficient to explain some ty-
pological patterns. For instance, humans appear
to have a simplicity bias across several domains
of cognition (Chater and Vitányi, 2003; Hsu et al.,
2013), and such a bias could explain the preference
for harmonic languages (Culbertson and Kirby,
2016), as harmonic grammars presumably have a
shorter description length than non-harmonic ones.

From the empirical side, the evidence that hu-
man learning biases favor typologically plausible
languages comes largely from artificial language
learning experiments in laboratory settings. Stud-
ies of this kind have shown that humans regularize
novel grammatical rules in typologically plausi-
ble ways in the domains of phonology (Wilson,
2006) and morphology (Kam and Newport, 2005;
Fedzechkina et al., 2012). Most relevant to the
present discussion, a harmonic learning bias in arti-
ficial language learning has been found for English-
speaking adults (Culbertson et al., 2012) and chil-
dren (Culbertson and Newport, 2015), as well as
native speakers of cross-linguistically rare non-
harmonic languages (Culbertson et al., 2020).



2.3 Counterfactual Language Paradigm

Artificial or counterfactual language learning has
also been widely applied to LMs in recent years
(Ravfogel et al., 2019; Hahn et al., 2020; White
and Cotterell, 2021; Hopkins, 2022; Clark et al.,
2023; Kallini et al., 2024; Kuribayashi et al., 2024).
Whereas studies on human subjects are highly con-
strained by time, resources, and the limits of human
attention, LMs can feasibly be trained extensively
on artificial languages which can be highly com-
plex, naturalistic, or formal. Accordingly, the de-
sign space for these types of studies is large and
comes with numerous trade-offs. Specifically, we
can distinguish the artificial language designs based
on whether they take what we refer to as a bottom-
up approach where a counterfactual corpus is gen-
erated from a manually specified lexicon and gram-
mar; or a top-down approach where a naturalistic
corpus is modified according to a set of rules.

At the extreme end of bottom-up approaches are
studies that examine the learnability of different
classes of formal languages for different neural
network architectures, and therefore generate data
potentially far outside the complexity class of nat-
ural language (Ebrahimi et al., 2020; DuSell and
Chiang, 2022; Hao et al., 2022; Deletang et al.,
2023; Borenstein et al., 2024; Someya et al., 2024).
2 A slightly more natural approach is to design
and generate texts from probabilistic context-free
grammars inspired by those of natural language but
which can violate specific typological properties.
These studies (White and Cotterell, 2021; Kurib-
ayashi et al., 2024) have yielded diverging results
on whether the inductive biases of LMs align with
those of humans. However, bottom-up corpora mas-
sively simplify the problem of language learning
and processing. Naturalistic data contains a depth
of constructions, statistical patterns, and errors that
cannot practically be generated using a bottom-up
approach.

The top-down approach achieves greater ecolog-
ical validity by taking as a starting point a corpus
that includes all the complexity of natural data, and
performing controlled manipulations, often using
constituency or dependency parses of the data. One
common approach uses parses to filter particular
sentence types from a training corpus (Jumelet and

2These empirical studies should be distinguished from
theoretical studies that prove analytically which languages
can be recognized by different architectures. See Strobl et al.
(2024) for an overview of that line of work.

Hupkes, 2018; Warstadt, 2022; Patil et al., 2024;
Misra and Mahowald, 2024). Other work applies
rules to parses to modify sentences. Ravfogel et al.
(2019) use gold parses from the Penn Treebank
(Marcus et al., 1993) to create counterfactual ver-
sions of English with different agreement mark-
ing systems and each of the six possible dominant
orders of subject, object, and verb. Hahn et al.
(2020) create counterfactual dependency grammars
by specifying for each arc label whether the depen-
dent goes to the left or right and how close to the
head it is placed relative to its sisters. While this
approach results in more ecologically valid coun-
terfactual languages, it is also a noisy and difficult
process to control. Messy source data, annotation
errors, or limitations of linguistic annotation sys-
tems mean that counterfactual corpora have more
ungrammatical content (relative to the counterfac-
tual grammar) than the original corpus. Nonethe-
less, our study takes a top-down approach, while
attempting to minimize and control for noise.

3 Experimental Design

Our experiments test whether LMs show differ-
ences in learning natural languages with harmonic
word orders compared to minimally different ar-
tificial languages with non-harmonic word orders
(implausible languages).

The Independent Variable: Harmonic and non-
harmonic languages We manipulate word order
harmony using a top-down approach to counter-
factual corpus generation. We modify naturally
occurring corpora for languages with harmonic
word orders by violating five specific Greenber-
gian correlation pairs, one at a time (see §4). For
each For each correlation pair, there are two types
of harmonic languages (SVO with head-initial or-
der, SOV with head-final order) represented by the
natural corpora and two types of non-harmonic
languages (SVO with head-final order, SOV with
head-initial order) represented by counterfactual
corpora.

The Dependent Variables: Measures for
learnability There is no universally accepted
definition or measure for learnability in the LM
literature. In this study, we investigated the learn-
ability of counter-Greenbergian languages based on
the learning trajectory of the LMs as well as their
final performance after a certain period of training.
Given the concern that some counter-Greenbergian



languages might eventually be learnable for hu-
mans, one would naturally hypothesize that these
tendencies could exist due to other learning barriers,
such as learning efficiency. Therefore, we observed
the learning trajectory of the counterfactual LMs
across their checkpoints. Details of our evaluation
metrics and experimental results are shown in §5.

Addressing confounds: Symmetrical experimen-
tal design A key confound we try to avoid is
that if we test on a fully head-initial language like
English and make it head-final, the change in learn-
ability can result from other factors than breaking
the correlations, such as (a) models’ learning biases
towards the head direction of a language, or (b) the
amount of noise we induced during counterfactual
corpus generation. Our approach involves various
ineliminable noise sources, including parser errors
or ambiguities, punctuation removal prior to cor-
pus editing, and the limitations of UD (universal
dependencies) annotations.

We address (a) by conducting our experiments
symmetrically with both a fully head-initial lan-
guage and a fully head-final one. We address (b)
by reporting human validation scores, identifying
parser ambiguities, and creating BASELINE cor-
pora variants that follow the same preprocessing
steps of removing punctuation and lower-casing as
applied to counterfactual corpora.

4 Creating Counterfactual Languages

This section describes our procedure for creating
counterfactual corpora by modifying natural sen-
tences top-down. Implementation details and ex-
amples are further provided in Appendix A.

4.1 Swapping Greenbergian Correlation Pairs

Notation We denote a correlation pair using the
notation <H, D>, where H is the Verb patterner
and is a mnemonic for head, and D is the Object
patterner and is a mnemonic for dependent. We
use this notation to name a type of correlation pair
by its syntactic categories (e.g., <Adp, NP>) or to
refer to a single instance of expressions belonging
to the relevant categories (e.g., <in, the house>).

Targeted Correlation Pairs Table 1 summarizes
the selected subset of Greenbergian correlation
pairs identified by Dryer (1992) in our study. As
shown in Tab. 3, we identify the five correlation
pairs in dependency parses in the Universal
Dependencies framework partly following Hahn

et al. (2020). While dependency arcs are a good
start for identifying instances of H or D, they
only connect two words, not entire phrases, and
there is no one-to-one or even many-to-one
correspondence between Universal Dependencies
arcs (De Marneffe et al., 2021) and Dryer’s (1992)
correlation pairs. For each language examined and
each of the five correlation pairs, we implement
a version of the swapping algorithm below to
generate six distinct variants of a corpus with
different word orders (Table 1).

Algorithm Overview The goal of our algorithm
for creating counterfactual corpora is to swap the
relative order of all instances of the relevant cor-
relation pair within the input sentence. The word
order is swapped at a span level. That is, given
a sentence w “ rw1, ..., wns and its dependency
parse p, a word pair pwH , wDq with a specific de-
pendency type is first identified, and their spans
sH (sD) are determined as a continuous word
sequence in w consisting of the identified word
wH (wD) and its descendants3 in the dependency
structure, i.e., sh “ rwi, ¨ ¨ ¨ , wH , ¨ ¨ ¨ , wjs; here,
1 ď i ď H ď j ď n, and wH should be the
head of the partial dependency structure of sH .
Then, the word order is swapped so that the rel-
ative position of sh and sd changes. All the pairs
of tokens (spans) that meet the criteria of an <H,
D>-pair in Table 3 are identified, and this span-
swapping process is performed recursively (Algo-
rithm 1 in Appendix A). Exceptions, additional
conventions, and handling of coordination are cov-
ered in Appendix A.1.

Handling Multiple Pairs In the case that multi-
ple dependent spans share the same head wH in a
sentence, we perform swapping by reflecting the
dependents around wH . In other words, we main-
tain the relative distance between H and D. In an
abstractive example of swapping “H D1 D2", the
swapped order becomes “D2 D1 H". In addition,
since the dependency parse of a sentence exhibits a
directed acyclic graph structure, and there might be
nested correlation pairs, we perform a depth-first
search over the sentence in our swapping algorithm
(Algorithm 1).

3Strictly speaking, we use more different criteria to deter-
mine a word’s span depending on the grammar of the language
and the annotation, i.e. we do not always include all and only
the descendants of the word.
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Figure 1: Histogram of the number of swaps per
sentence for each counterfactual language.

Train Data (En) BLiMP Train Data (Ja) JBLiMP

Pair Prec Rec Val Val Prec Rec Val Val

<Cop, P.> 59.1 54.2 4.4 4.9 55.0 55.0 4.8 4.9
<Aux, V> 95.8 95.8 5.0 4.9 72.7 83.3 4.5 4.5
<N., Gen.> 80.0 80.0 4.8 5.0 81.0 81.0 4.8 4.9
<V, O> 74.4 73.4 4.3 4.6 85.9 81.6 4.2 4.3
<Adp, NP> 78.9 81.8 4.7 4.9 85.8 89.0 4.6 4.6

Table 2: Human validation results of counterfactual
corpora. “Prec,” “Rec,” and “Val” denote precision,
recall, and the averaged validation score indicated
in the 5-point Likert scale.

Handling Japanese-Specific Issues Sometimes,
a naive application of English implementation to
Japanese does not work consistently due to dif-
ferences in grammars and annotation conventions.
For example, Japanese UD does not adhere to as
rigid a notion of word as English UD. To make the
swapping algorithm for both languages as similar
yet correct as possible, we introduced some addi-
tional rules for the Japanese implementation (see
Appendix A.3).

Statistics The frequency distributions of word-
order swapping in a sentence for each correlation
pair are shown in Fig. 1, which were estimated us-
ing a held-out set of LM training data (Wiki-40B).
The total number of swaps from lowest to highest
is <Cop, Pred>, <Aux, V>, <Noun, Genitive>,
<V, O>, and <Adp, NP>. Henceforth, the experi-
mental results are reported in this order to facilitate
interpretation of the results.

4.2 Human Data Validation

We conduct a human validation of our counterfac-
tual corpora at several stages to ensure the validity
of our swapping algorithm and iteratively improve
our swapping algorithms. Earlier iterations of val-
idation were less formal, and resulted in changes
to the swapping algorithm. Below we describe
the validation of our final counterfactual corpora.

While the swapping algorithm is not perfect, we
believe that transparency about these flaws is an
improvement over previous studies on top-down
counterfactual corpora, none of which report any
metric to evaluate the quality of their counterfactual
corpora (Ravfogel et al., 2019; Hahn et al., 2020;
Clark et al., 2023).

Quantitative Evaluation Annotators manually
list all <H, D> pairs that should be swapped for
that sentence, according to their judgment. They
compare this gold list to the silver list of all
<H, D> pairs identified by the parser and swapped
by the algorithm. We then compute the precision
of the silver swaps (#correct silver

#silver ) and the recall

(#correct silver
#gold ) over the entire annotated sentences.

Qualitative Evaluation Annotators also subjec-
tively assess the validity of each swapped sentence
using a 5-point Likert scale (see Appendix C). This
additional evaluation is motivated for several rea-
sons: First, the quantitative evaluation unjustifi-
ably favors mistakes that fail to identify a pair
(which affects only recall) over mistakes where
a silver pair is similar but not an exact match to a
gold pair (which harms precision and recall). Sec-
ond, the silver string may sometimes be correct
even if the identified pairs are not, i.e., some pairs
are truly subjective due to ambiguity in the sen-
tence or inevitable underspecificity in our annota-
tion guidelines. Third, errors can cascade, i.e., a
single incorrect arc can lead to two (or more) er-
rors arising from the words incorrectly connected
and the words incorrectly not connected. Finally,
some errors are intuitively less divergent from the
counterfactual target (e.g., incorrectly resolving a
prepositional phrase attachment) than others (e.g.,
misparsing a verb as a noun).

Annotators and Data One English native
speaker and two Japanese native speakers anno-
tated the gold word swap and the validity score for
each sentence (each example was assessed by one
annotator). The annotators are all authors on the
paper with PhD-level training in linguistics. Our
validation is mainly made on the training data for
LMs (see §5), but we also conducted the quali-
tative evaluation part on sentences sampled from
BLiMP/JBLiMP benchmarks, which are used in
our LM evaluations §6.3. We sampled 120 sen-
tences for <V, O> and 40 sentences for the other
correlation pairs for annotation, respectively, from
the respective data sources, and thus 280 sentences



are of validation target in each evaluation setting
(e.g., English/Japanese LM training data).4 No-
tably, these validation targets include sentences
without any target of respective swapping to prop-
erly estimate the precision of the algorithm.5

Results Table 2 shows the results. The precision
and recall of the word-sapping are typically above
or near 80%, and the average validity score on a
5-point scale is above 4. Thus, we conclude that
our word-swapping algorithm properly worked in
most cases. In addition, the 5-Likert scale scores
are generally similar between LM training data and
(J)BLiMP; thus, there are no issues specifically
associated with the (J)BLiMP datasets, which in-
clude more complex or rare linguistic phenomena.
Though the swapping precision/recall for the <Cop,
Pred> part was particularly low, the validity scores
are high. This is due to frequent minor errors, typi-
cally in identifying the scope of the predicate in the
copula construction. For example, our algorithm
converted a sentence “he was active in the rsp stu-
dent wing.” into “he active was in the rsp student
wing.,” while human annotation was “he active in
the rsp student wing was.”

5 Model Training

Language Modeling To assess the inductive bias
of both causal LMs and masked LMs, we duplicate
our experiments with both GPT-2 small (Radford
et al., 2019) and LTG-BERT (Samuel et al., 2023)
architectures.6 All models are trained for 12 epochs
from scratch, and we examined three different ran-
dom seeds for each setting. Appendix D shows
additional training details.

Data We choose English and Japanese to per-
form our symmetrical (head initial/finalÑfinal/ini-
tial) experiments. Train, validation, and test splits
consist of 100M words, 10M words, and 1M words,
respectively. Token numbers are counted based on

4We annotated an especially large number of sentences for
the <V, O> swap since it induced more diverse changes than
the other correlation pairs.

5When sampling LM training data to annotate, we bal-
anced the data in each correlation pair to have 20 sentences
with no silver swaps to better estimate the precision of the al-
gorithm. Reported precision and recall reflect the distribution
in the overall corpus, not the balanced sample.

6LTG-BERT is a masked LM which resembles DeBERTa
(He et al., 2021) with some additional optimizations. We
choose this architecture as it is the basis for the model that
won the BabyLM Challenge, a competition on data-efficient
pretraining (Warstadt et al., 2023).

whitespace in English and MeCab (Kudo, 2005)
with the ipadic dictionary in Japanese, respectively.
These sentences are sampled from the English and
Japanese parts of the Wiki-40B dataset (Guo et al.,
2020). We choose Wikipedia data as the domain is
similar to the data that the UD parsers were trained
on, and thus we expect the resulting counterfac-
tual corpora to be more accurate than would result
from more developmentally plausible data such as
child-directed speech.

We use Stanza to obtain dependency parses for
every sentence in the corpora. To avoid erro-
neous swapping, we removed (i) all punctuations
from English and Japanese sentences; (ii) brackets
(with their inside content) from Japanese sentences,
i.e., typically rubi for Japanese Kanji; and (iii)
sentences with lower-cased English words from
the Japanese corpus. We set two baseline mod-
els: (i) an ORIGINAL model that is trained on our
100M Wiki-40B dataset without any preprocessing
or swapping, and (ii) a BASELINE model that is
trained on the corpus with the preprocessing but
without any swapping. Comparisons between the
ORIGINAL and BASELINE models function as a
check for any unintended biases from our prepro-
cessing. Comparisons between BASELINE and the
other counterfactual LMs are of primary interest
in how much counterfactual word order hurts lan-
guage learning.

6 Results

6.1 Evaluation 1: Perplexity

Results We first compare the perplexities (PPLs)
on the held-out data achieved by the LMs in
each language, including counterfactual ones (Fig-
ure 2).7 In the final epoch, the counterfactual LMs
achieved similar PPL scores to the BASELINE LMs.
However, if we look at the entire learning trajectory,
learning appears to be slower for the counterfac-
tual languages. Note that the ORIGINAL LMs also
achieved PPL slightly better than BASELINE but at
an approximately similar scale; our preprocessing
did not drastically change the language modeling
task difficulty. The <V, O> variants tend to have
slightly worse PPLs compared to BASELINE and
other counterfactual languages, which might be
due to the fact that <V, O> corpora have a large

7We report PPL per character for the Japanese results. This
is necessary because the change in word order in different
Japanese variants results in different token lengths due to the
lack of whitespace word boundaries in Japanese.
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Figure 2: Final PPLs on respective heldout data for English-based counterfactual LMs (left) and Japanese-
based counterfactual LMs (right). Error bars indicate standard deviation over three random seeds.

number of syntactically complex swaps (Figure 1)
and relatively worse swapping validity according
to our human annotation (Table 2). Thus, the per-
formance of LMs might plausibly reflect noise in
the corpus as well as the difficulty of the (intended)
grammar.

Statistical Tests We perform a paired Wilcoxon
signed-rank test for each correlation pair in each
source language by comparing six PPL scores of
tGPT2,LTG-BERTuˆt3 seedsu from the corre-
sponding counterfactual models and those from
BASELINE models. Out of the ten settings of
tEn, Jau ˆ t5 word ordersu, only one setting of
English <V, O> showed that the baseline model
(real English) is significantly easier to learn (p “

0.03 ă 0.05) than the counterfactual one. How-
ever, if we extend this analysis into learning tra-
jectories, the statistical tests between 72 PPLs of
tGPT2,LTG-BERTuˆt3 seedsuˆt12 epochsu
can be made, and this yields that the real English
is significantly easier to learn than the counterfac-
tual one in all the five correlation pairs (p ă 0.05),
while the real Japanese is not significantly easier
to learn than the counterfactual one in all the five
correlation pairs (p ą 0.05).

6.2 Evaluation 2: Minimal Pair Preferences

Settings The previous evaluation measures PPL
on all the tokens in the corpus; some of them are
not necessarily related to our targeted word order
change. For a more targeted evaluation of the learn-
ability of counterfactual Greenbergian word order-
ing, we design a binary task requiring selecting the
right word order given two sentences containing
at least one instance of a relevant correlation pair,
differing only in whether the order of the elements
in each pair is correct. The task design is symmet-
rical between counterfactual and BASELINE LMs;
the correct option follows the counterfactual word
order when evaluating counterfactual LMs, and

vice-versa for the BASELINE LMs. To assess word
order preference we compare the predicted proba-
bility (i.e., accumulated surprisal) of each sentence;
that is, the option with a higher probability, i.e.,
lower surprisal, is regarded as preferred by LMs.
We report the accuracy in the binary task of select-
ing the correct word order. The sentences were
sampled from the held-out set of Wiki-40B data.

Results Figure 3 shows the trajectory of accuracy
during LM training. All the counterfactual LMs
prefer the correct word order over the incorrect one
much more than random chance (accuracy of 0.5),
which leads to our conclusion that LMs general-
ized well to counter-Greenbergian languages and
learned the counterfactual ordering pattern success-
fully. Nevertheless, in many settings, the BASE-
LINE LMs yielded higher accuracies than the coun-
terfactual ones; thus, at least through the lens of
this experiment, the real languages are usually eas-
ier to learn their word order for LMs. However,
this does not always appear to be the case as some
counterfactual languages exhibit almost the same
accuracies as the corresponding BASELINE LMs,
specifically for GPT-2.

Statistical Tests We perform a paired Wilcoxon
signed-rank test for each correlation pair in
each source language by comparing 72 accuracy
scores of tGPT2,LTG-BERTu ˆ t3 seedsu ˆ

t12 epochsu from the corresponding counterfac-
tual models and those from BASELINE models. In
all the ten settings of tEn, Jau ˆ t5 word orderu,
the BASELINE LMs exhibited significantly higher
accuracies than the counterfactual LMs (p ă 0.05;
in eight settings p ă1e-12).

6.3 Evaluation 3: BLiMP & JBLiMP
Settings In addition to the minimal pair prefer-
ence on Wiki-40B sentences (§6.2), we further
evaluate LMs on specific linguistic phenomena,
ranging over morphology, syntax, and semantics,
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Figure 3: Performance trajectories for minimal pair comparisons targeting the counterfactual word
order for counterfactual models and natural order for baseline model, for English-based LMs (left) and
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Figure 4: Performance trajectories of English-based counterfactual LMs in BLiMP (left) and Japanese-
based counterfactual LMs in JBLiMP (right). Shaded areas present SDs over three random seeds.

again using the minimal pair paradigm. This eval-
uation tells us whether counterfactual word order
has negative impacts on learning specific gram-
mar rules not necessarily related to the swapped
rule. Specifically, we test LMs on a downsam-
pled8 version of BLiMP (Warstadt et al., 2020) and
JBLiMP (Someya and Oseki, 2023) benchmarks
of minimal pairs for English and Japanese exper-
iments, respectively. For each counterfactual lan-
guage, we also create a respective counterfactual
version of BLiMP and JBLiMP by applying the
same word-order swapping algorithm (§4) to them.
Thus, each example in counterfactual (J)BLiMP
consists of a pair of grammatically correct and in-
correct sentences in the counterfactual language
space. Notably, as demonstrated in §4.2, the ac-
curacy of the word-order swapping algorithm was
generally good even in BLiMP/JBLiMP datasets;
this alleviates (but does not fully eliminate) the po-
tential concern that these counterfactual versions of
benchmarks are too noisy to estimate the model’s
linguistic knowledge.

Results We report the macro average of accuracy
over the 12 BLiMP suites (or 9 JBLiMP suites).
Figure 4 shows the performance trajectory of LMs

8We randomly sample 5 examples from each of the 67
BLiMP circuits, combine them into 12 BLiMP categories, and
calculate the macro average accuracy over 12 categories.

during training. The BASELINE trajectories are
relatively similar or slightly better than those from
counterfactual LMs, suggesting that counterfactual
word order not drastically but slightly prevented
LMs from acquiring grammatical knowledge.

Statistical Tests We performed a paired
Wilcoxon signed-rank test for each cor-
relation pair in each source language
by comparing 864 accuracy scores of
tGPT2,LTG-BERTu ˆ t3 seedsu ˆ

t12 epochsu ˆ t12 BLiMP categoriesu from
the corresponding counterfactual models and those
from BASELINE models. In six of the ten settings
of tEn, Jau ˆ t5 word ordersu, BASELINE LMs
exhibited significantly higher BLiMP accuracies
than the counterfactual ones (p ă 0.05).9

7 Discussion and Conclusions

Our findings show that autoregressive and masked
LMs have a consistent learning bias—with some
notable exceptions—favoring harmonic languages
over the nonharmonic counterfactual languages
we examined. Strikingly, the experimental results

9If we apply the Bonferroni correction, given that we per-
formed statistical tests 30 times through our three experiments,
the results could be more conservative, where baseline lan-
guage yielded significantly higher BLiMP accuracies than four
counterfactual languages (p ă 0.0016 “ 0.05{30).



from Section 6.2 show that, for sentences involving
the modified grammar rule, learning trajectories
of the counterfactual languages lag behind those
of the original language for every counterfactual
language, model, and source language we examine.
The evaluations measuring PPL §6.1 and (J)BLiMP
performance §6.3 are more mixed, with counterfac-
tual languages showing significantly worse perfor-
mance across training only about half the time.

While these conclusions about LMs’ learning
biases are interesting in their own right, their im-
plications for debates about linguistic typology are
particularly important. The role of modern LMs in
linguistics and cognitive science has been a topic
of much discussion and controversy (Pater, 2019;
Linzen, 2019; Baroni, 2022; Warstadt and Bow-
man, 2022; Lan et al., 2024; Wilcox et al., 2023;
Piantadosi, 2023; Katzir, 2023; Millière; McGrath
et al., 2024). Here, we will not rehearse all the
details of this debate, but present a condensed ac-
count of how our experiments on LMs can inform
ongoing debates about human language:

Chomsky et al. (2023) publicized aspects of
this debate by claiming LMs learn impossible lan-
guages, and consequently have limited relevance to
the study of human language. Kallini et al. (2024)
empirically test the first part of this claim in de-
tail, showing that LMs display relative difficulty
acquiring counterfactual versions of English with
rules involving highly unnatural operations such as
reversing strings and counting. Our study furthers
Kallini et al.’s conclusions by showing that LMs
continue to show a learning bias for typologically
dispreferred counterfactual languages closer to the
boundary between plausible and implausible. How-
ever, we also take issue against the second part of
Chomsky et al.’s argument.10

We contend that LMs, can help answer two ques-
tions about linguistic typology and acquisition, re-
gardless (in some cases) of whether they show
human-like biases. First is the question of whether
humans actually have a learning bias for harmonic
languages. As discussed in §2.2, the evidence in
support of this conclusion from human subjects
is limited somewhat due to the small scale and
simplicity of the artificial languages employed. Al-
though LMs come with other limitations, the top-
down approach to counterfactual language creation

10Kallini et al. do claim that evidence from LMs is relevant
to questions about the innate priors required for language
learning (p. 14699) but do not fully spell out the argument that
we give below.

allows for naturalistic complexity and scale in the
training data, providing a complementary line of
evidence. Our observation of a harmonic learn-
ing bias in LMs is powerful converging evidence
adding to evidence from human studies that a learn-
ing bias for harmonic languages is real. Given the
LMs show this bias as well, there is less reason to
doubt similar findings regarding humans.

Second is the question of whether a harmonic
learning bias in humans is due to language-specific
or domain-general priors. The argument here
is similar to that in several prior works (Clark
and Lappin, 2011; Warstadt and Bowman, 2022;
Wilcox et al., 2023; Constantinescu et al., 2024;
Kuribayashi et al., 2024): The Transformer archi-
tecture on which modern LMs are based (Vaswani
et al., 2017) is not specifically designed for lan-
guage but is highly effective for domains as far
reach as language, vision (Dosovitskiy et al., 2021),
and protein sequences (Jumper et al., 2021), sug-
gesting that it relies on domain-general learning
biases. Thus, if one accepts that Transformes do
show a harmonic bias, it follows that language-
specific biases are not necessary to observe this phe-
nomenon at least to some degree, and that should
increase our credence in an explanation in terms of
externally motivated domain-general biases in hu-
mans. Furthermore, previous findings of harmonic
bias in humans (e.g., Culbertson et al., 2012) might
not be construed as evidence for language-specific
bias in humans.

Importantly, evidence from this kind of experi-
ment is relevant regardless of the result. If we had
found that Transformers did not show a harmonic
bias, it would follow that such a bias is not a neces-
sary consequence of the domain-general biases suf-
ficient for language learning (at least assuming they
learned the counterfactual languages successfully).
While it would still be possible in this counterfac-
tual scenario that Transformers lack the relevant
domain-general bias, we would nonetheless have
increased our credence that humans might have
some idiosyncratic learning mechanism which may
well be language-specific.

It bears mentioning that even if humans do have
a harmonic learning bias, other factors may still
be equally if not more important to explain typo-
logical correlations. Communicative pressures are
another mechanism that might explain these phe-
nomena, and extending our methods to test this
mechanism is a promising avenue for future work.



Hahn et al. (2020) and Clark et al. (2023) have both
found that counterfactual languages perform worse
than natural languages on measures of communica-
tive efficiency, such as dependency length and uni-
formity of information density. These measures
can be straightforwardly applied to our counterfac-
tual corpora, which employ both more targeted and
syntactically informed manipulations than in those
previous works.

We must acknowledge an important limitation
that tempers the force of our conclusions: Our man-
ual validation shows that even our relatively careful
approach to counterfactual language construction
leads to numerous errors arising from parser errors.
Thus, it is possible that our findings may be due
partially or entirely to increased noise in the coun-
terfactual corpora, rather than inherent differences
in learnability between the original and counterfac-
tual grammars. One defense against this unsatis-
fying conclusion is that on the PPL evaluation the
final performance of counterfactual and original
LMs are mostly not significantly different, suggest-
ing that in the limit, the counterfactual languages
are largely as predictable as the originals. While
it is true that the languages with the most noise
according to our validity annotations, the <V,O>
languages, show the highest PPL, this pattern does
not apply across other counterfactual languages.
We leave it to future work to explore alternative
methods to reduce noise in naturalistic counterfac-
tual corpora or to control for the amount of noise
introduced by different forms of data manipulation.

Finally, while our study is a step forward in test-
ing the learnability of counterfactual languages, it
still leaves open many questions and avenues for fu-
ture work. Our conclusions are based only on two
languages, so it will be important to try to replicate
these results with more SVO and SOV languages,
and also on languages with inconsistent VO order-
ing, such as German, though this direction will
require input from many domain specialists and
native-speaker linguists. Future work should also
study a wider variety of models as well as train
models on more developmentally plausible data,
such as dialogue data and child-directed speech.

To conclude, the rise of effective and efficiently
trainable Transformer LMs has created the possi-
bility of investigating the learnability of counter-
factual languages at a scale and level of naturalism
not possible with human subjects. Through our
emphasis on a syntactically sophisticated top-down

approach to counterfactual language construction
and the release of our code and models, we hope
our work inspires further exploration of the diverse
space of possible languages and deepens our un-
derstanding of the particular subspace that human
languages occupy.
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A Implementation Details

A.1 English Policies
Here we provide the implementation details of the
swapping algorithm for each correlation pair in
the case of English experiments. Unless otherwise
specified in the next subsection, the same policy as
English is adopted for Japanese. Generally speak-
ing, we identify correlation pair instances using
the dependency arcs in Tab. 3. However, there are
numerous exceptions which we discuss below.

H UD Relation D

verb
obj

ÝÑ, iobj
ÝÑ, obl

ÝÑ
objectcop˚

ÝÑ, ccomp
ÝÑ , xcomp

ÝÑ

adposition case
ÐÝ NP

copula verb cop˚
ÝÑ predicate

auxiliary aux
ÐÝ VP

noun nmod
ÝÑ genitive

Table 3: Word orders of interest in Greenbergian
correlation pairs and their associated Universal
Dependencies, adopted mostly from Hahn et al.
(2020). The asterisked cop* is originally UD (uni-
versal dependencies) label cop that we changed
direction (lifted) during preprocessing, according
to linguistic conventions.

Verbs and Objects We construe the <V, O> cor-
relation more broadly to refer to a verb on the one
hand and its arguments and phrasal modifiers on
the other. In linguistic theory, there is no univerally
agreed upon test for this notion of objectood. To
obtain a usable boundary for objects when swap-
ping verb and object, we established five different
selection criteria that identify objects with verbs
based on their levels of connection, depicted in
Figure 5. Each of the five criteria corresponds to
a boundary, ranging from very tight to very loose,
and we adopt the “loose” boundary for objects in
our implementation. Under this boundary, we treat
all direct and indirect objects, prepositional ob-
jects, complement clauses and complement verb
phrases, prepositional phrase adverbials, and non-
finite adverbial clauses of a verb as objects in our
implementation.

Mapping these linguistic constituents to UD re-
lations, we use obj, iobj, obl, cop, expl,
xcomp and ccomp as dependency arc labels to iden-
tify the <V, O> pair. Since the ccomp arc corre-
sponds to both finite & non-finite adverbial clauses,
our approach depends on identifying an nsubj arc

direct
object (NP)

indirect
object (NP)

indirect
object (PP)

prepositional
object

complement
clause

comple-
ment VP

PP adverbials
(loc, temp)

nonfinite
adverbial
clauses

finite adverbial
clauses

Arguments Modifiers

lab
ele

d
as

ob
l

Very Tight Tight Medium Loose Very Loose

Figure 5: Illustration of different levels of tightness
when classifying verbal dependents as objects.

linked to the clause’s main verb to differentiate be-
tween finite and non-finite adverbial clauses. We
acknowledge that using the presence of a subject as
the distinguishing factor might not be the best prac-
tice, given that the distinction between these clause
types does not solely depend on having a subject,
but it is an effective heuristic for most cases.

Adpositions and Noun Phrases POS tags
NOUN, PROPN, NUM, PRON for noun phrases
and the UD arc label case identify the adposition
and noun phrase word spans. For compound adpo-
sitions, such as “in front of”, we identify multiple
case arcs one by one and swap accordingly.

Copula and Predicate The correlation pair
<Cop, Pred> is also included in <V, O> pair in our
formalization. In UD, the predicate is considered
the head of the cop arc and all VP modifiers. Fol-
lowing conventions in English syntax, we reverse
the direction of the cop arc, making the copula
the head of the predicate during preprocessing and
transferring the VP modifiers to it before identify-
ing both word spans using the cop*.

Auxiliary and Verb The <Aux, V> pair is identi-
fied by UD relation aux. We choose the associated
verb phrase instead of a single verb for the word
span of V following conventions in English syntax.

Noun and Genitive The <Noun, Genitive> pair
is identified by UD relation nmod. In English, how-



ever, possessive nominal modifiers are also labeled
with nmod, such as John’s book, contrasting with
book of John. Thus we include an additional condi-
tion on the existence of “of” between a noun and
its nominal dependents to identify genitives and
exclude possessives.

To identify the span associated with the Noun,
we select all children preceding the Noun and con-
nected by nummod, compound, appos and flat, and
all children between the Noun and the genitive.
This choice is a heuristic developed through trial
and error across several stages of annotation.

A.2 Handling Coordination

We also adopt a set of conventions regarding cases
of coordination, illustrated in the table below using
the correlation pair of <V,O> as an example.

The first pair of rows illustrates cases where there
is coordination of two dependents, which share a
single head. In such cases, we treat the pair of
dependents plus the conjunction as a chunk that is
swapped with the head.

The second pair of rows illustrates cases where
there two head–dependent pairs are coordinated.
The dependency parse will have a conj arc between
the two heads, and each head will have its own
dependents. In such cases, we perform swapping
for each head–dependent pair separately.

In the final two pairs of rows, we have two heads
coordinated, with the second one having a depen-
dent. Importantly, in the first of these pairs, the
dependent is shared by both heads, while in the
second, the dependent belongs only to the second
head. Unfortunately, both sentences will receive
the same dependency graph, so it is impossible to
distinguish between these two cases. We adopt the
convention that the two heads are treated as a chunk
when swapping with the dependent, although this
inevitably leads to incorrect swaps in cases like last
example below.

Constructions Examples

H D1 conj D2 we are students and teachers
D1 conj D2 H we students and teachers are

H1 D1 conj H2 D2 we like cats and love dogs
D1 H1 conj D2 H2 we cats like and dogs love

H1 conj H2 D we sing and dance in the park
D H1 conj H2 we in the park sing and dance

H1 conj H2 D we dance and play tag
D H1 conj H2 we tag dance and play

A.3 Japanese-Specific Treatments
Table 4 shows examples of counterfactual variants
of a Japanese sentence. The following paragraphs
explain some treatments employed in modifying
each word-order correlation pair in the Japanese
language.

Verbs and Objects The Japanese language has
a flexible word order, and the grammatical case of
arguments is marked with a special marker rather
than its word order (Tsujimura, 2013). However,
these particles are sometimes omitted or overwrit-
ten by other particles, such as “wa” (topicalization
marker; TOP) or “mo” (also), making the gram-
matical relationships ambiguous superficially and
leading to erroneous parser outputs. To handle such
errors, we employed several heuristic rules on top
of the parser output to improve the accuracy and
consistency of the word-order swapping algorithm:

• If a word has a nsubj dependency AND
the nominative case marker “ga,” the word
is treated as a subject (i.e., the word is not
swapped).

• If a word has a topicalization marker “wa,” the
word is not swapped.

• The other arguments with the nsubj, obj,
iobj, obl, cop, expl, xcomp dependency
are treated as an object (i.e., the word order is
swapped).

That is, unless an argument is explicitly marked
as a subject or marked topic, it is regarded as an ob-
ject, which is compatible with the loose definition
of object employed in the English experiment.

The second rule regarding the topicalization
marker “wa” handles the topicalization phenom-
ena. Note that the Japanese language is topic-
prominent (Noda, 1996; Teruya, 2004, 2007; Fu-
jihara et al., 2022), and a certain component of a
sentence is frequently topicalized (i.e., moved to
the initial part of the sentence with a special topical-
ization marker TOP). For example, either the subject
or object of a sentence (1) can be topicalized:

PRON ADP NOUN ADP VERB
(1) Watashi ga bôru wo negata.

I NOM ball ACC throw.

case

nsubj

case

obj

root

The subject is topicalized in sentence (2), and the
object is topicalized in sentence (3):



Correlation Pair Example

Original

NOUN ADP NOUN ADP NOUN ADP NOUN ADP VERB AUX NOUN ADP NOUN AUX
Ichigo no kisetsu ga shichigatsu kara hachigatsu made tsudui teiru koto wa jijitsu dearu.

Strawberry of season NOM July from August to runinng is that TOP fact is.

root

case

nmod

case case case

obl

obl

nsubj

aux

acl

case

nsubj

cop*

<V, O>

NOUN ADP NOUN ADP VERB AUX NOUN ADP NOUN ADP NOUN ADP NOUN AUX
Ichigo no kisetsu ga tsudui teiru hachigatsu made shichigatsu kara koto wa jijitsu dearu.

Strawberry of season NOM running is August to July from that TOP fact is.

obl

obl

<Adp, NP>

ADP NOUN ADP NOUN ADP NOUN ADP NOUN VERB AUX ADP NOUN NOUN AUX
No ichigo ga kisetsu kara shichigatsu made hachigatsu tsudui teiru wa koto jijitsu dearu.
Of strawberry NOM season from July to August runinng is TOP that fact is.

case case case case case

<Cop, Pred>

NOUN ADP NOUN ADP NOUN ADP NOUN ADP VERB AUX NOUN ADP AUX NOUN
Ichigo no kisetsu ga shichigatsu kara hachigatsu made tsudui teiru koto wa dearu jijitsu.

Strawberry of season NOM July from August to runinng is that TOP is fact.

cop*

<Aux, V>

NOUN ADP NOUN ADP NOUN ADP NOUN ADP AUX VERB NOUN ADP NOUN AUX
Ichigo no kisetsu ga shichigatsu kara hachigatsu made teiru tsudui koto wa jijitsu dearu.

Strawberry of season NOM July from August to is running that TOP fact is.

aux

<Noun, Genitive>

NOUN NOUN ADP ADP NOUN ADP NOUN ADP VERB AUX NOUN ADP NOUN AUX
Kisetsu ichigo no ga shichigatsu kara hachigatsu made tsudui teiru koto wa jijitsu dearu.
Season strawberry of NOM July from August to runinng is that TOP fact is.

nmod

Table 4: Counterfactual examples from our variants of the Japanese language. The word span of verb
patterner is colored red, and the word span of object patterner is colored blue. In the <V, O> example,
we omit the swapping regarding the cop dependency for the purpose of explanation and brevity. The <V,
O> example demonstrates the reflective swapping (H D1 D2 Ñ D2 D1 H) mentioned in §4.1.

PRON ADP NOUN ADP VERB
(2) Watashi wa bôru wo negata.

I TOP ball ACC throw.

case

nsubj

case

obj

root

PRON ADP NOUN ADP VERB
(3) Bôru wa watashi ga negata.

Ball TOP I NOM throw.

case

nsubj:outer

case

nsubj

root

The topicalized component is typically ambigu-
ous in terms of its grammatical case, and thus, the
parser outputs were erroneous. Such a marked
word order is beyond our interest since the Green-
bergial correlations are generally on the canonical,
unmarked word order of language. Thus, we did
not modify the word order of such an explicitly top-
icalized word, even if it is seemingly an object of
a verb. For example, the topicalized object, “Bôru
wa” in Example (3), is no longer the target of <V,
O> swapping.

Another Japanese-specific concern is on a par-
ticular type of noun, called sa-hen noun, which
can behave as a verb with a special conjuga-
tion verb “suru,” e.g., “yôyaku” (NOUN)Ñ“yôyaku-
suru” (VERB), like the English words“summary”
(NOUN)Ñ“summar-ize” (VERB). However, the con-
jugation verb “suru” is sometimes omitted even
when the sa-hen noun is used as a verb. Such nouns
are typically annotated as NOUN with objects in the
Japanese UD:

PROPN ADP NOUN ADP NOUN ADP ADP NOUN
Ken ga rêsu wo ketsujô to no uwasa...
Ken NOM race ACC skip that rumor...

case

nsubj

case

obj

case

case

nmod

Here, “ketsujô” (skip) is annotated as a NOUN but
can be regarded as a VERB, and the native Japanese
validator indeed pointed out this should be included
in the verb-object pairs. Thus, we regarded sa-hen
nouns with either nsubj, obj, iobj, obl, cop,
expl, xcomp dependent as verbs even when there
is no conjugation verb. With this rule, in the above
example, “ketsujô” is treated as a verb, and thus



the position of its object “rêsu-wo” (race-ACC) will
be changed by the <V, O> swapping algorithm.

Adpositions and Noun Phrases Japanese has a
nominalizer, “-no,” which can convert any con-
tent word to a noun. For example, a verb
“hataraku” (work) can be a noun with that nom-
inalier “hataraku-no” (working), but such nominal-
ization is not reflected in the PoS tag of the nomi-
nalized words. We regard the words nominalized
by “-no” (tagged as SCONJ) as NOUN in this paper,
and thus, the following sentence will also be a tar-
get of <Adp, NP> swapping even though the head
of the nmod dependency “karui” is ADJ rather than
NOUN:

PRON ADP ADJ SCONJ ADP ADJ NOUN AUX
Kare no sugoi no wa kashikoi tokoro da.
He ’s excellent -ness TOP smart aspect is.

case

nmod

mark

case acl

csubj

cop

root

Copula and Predicate The cop dependency is
attached only to an auxiliary verb “desu” in the
original Japanese UD. We increased the coverage
of copula verb based on the following criteria:

• AUX of “dearu” (is), “denai” (is not), “dewanai”
(is not), “janai” (is not), “rashî” (looks/seems/-
sounds like) “kamoshirenai” (may be) .

• VERB with “iru” (exist), “aru” (exist), or “naru”
(become) as its lexicon.

That is, in the following example, the original
annotation on the left with the copula verb “dearu”
is converted into the dependency graph on the right:

PRON ADP NOUN AUX
Kore wa jijitsu dearu.
This TOP fact is.

case

nsubj

aux

root

PRON ADP NOUN AUX
Kore wa jijitsu dearu.
This TOP fact is.

case

nsubj

cop*

root

Note that we only targeted the cases where the
copula verb has a nsubj dependent since the corre-
sponding construction in English, i.e., a sentence
“A is B.” with the omission of “A,” is very rare.

Auxiliary and Verb While auxiliary words are
swapped with an entire verb phrase rather than a
single verb in the English implementation of <Aux,
V> swapping, the Japanese implementation only
swaps a single verb. This is because Japanese aux-
iliary verbs are typically analyzed as affixes, and
thus separating them from the verb modifies the lan-
guage beyond simply breaking the Greenbergian

correlation. Taking the sentence in Table 4 as an ex-
ample, the auxiliary “teiru” is moved immediately
before the verb “tsudui,” rather than the initial po-
sition of the sentence, regarding the whole descen-
dants of the verb (“Ichigo no kisetsu ga shichigatsu
kara hachigatsu made”) in the <Aux, V> variant.

Noun and Genitive We identified the genitive
constructions as follows:

• A nmod dependency to a noun phrase.

• The dependent has either particle of “no,” “ga,”
or “tsu.”

We exclude some exceptional constructions; for
example, we did not swap the expression “X-no yô
na” to be “yô X-no na.” We also considered the
nominalization in identifying a noun, as explained
in the <Adp, NP> swapping.

B General Swapping Algorithm

Algorithm 1 below is the basic form of the depth-
first swapping algorithm. This basic algorithm was
modified to handle the specific of each language
and correlation pair as described in Appendix A.

Algorithm 1 Swapping Greenbergian correlation
pairs in a sentence

1. def Swap:sentence s, UD parse p, Correlation pair <X,
Y>

2. stack Ð rroots
3. visited Ð setpq

4. while stack is not empty :
5. node Ð POPpstackq

6. if node is not in visited :
7. ADDTOVISITED(visited, node)
8. for each child c of node in the parse p of s :
9. if node is verb-patterner X and c is object-

patterner Y :
10. SWAPPAIR(node, c, s, p)
11. if c is not in visited :
12. PUSH(stack, c)
13. return s

C Additional Annotation Guidelines

The 5-point Likert scale used to evaluate the valid-
ity of swapped sentences is given below:

1. All or most swaps have serious errors
2. A few serious errors or several small errors
3. A few small errors
4. A minor error or less likely but valid changes
5. Perfect



D Details on Experimental settings

Language Models All models are trained us-
ing the HuggingFace library (Wolf et al., 2020).
For GPT-2 small model, sub-word tokenization is
implemented by Byte-Pair Encoding (BPE) algo-
rithm (Sennrich et al., 2016) with a vocabulary
size of 32,000. For LTG-BERT, we adopted the
same WordPiece tokenizer with a vocabulary size
of 214 “ 16384 as in the original implementation
(Samuel et al., 2023), only removing special char-
acters <TAB> and <PAR> as it doesn’t apply to
Wiki-40B text format.

Stanza Parsers We use Stanza (Qi et al.,
2020) version 1.5.1 and 1.6.1 based on the UD
2.0 formalism (Nivre et al., 2020) for English
and Japanese, respectively. For Japanese, we
used a long-unit-word (LUW) parser (https:
//github.com/UniversalDependencies/UD_
Japanese-GSDLUW) which is more compatible
with the syntactic UD scheme (Omura et al., 2021)
rather than the default, short-unit-word (SUW)
parser which is better for morphological analysis
(Tanaka et al., 2016; Murawaki, 2019; Pringle,
2016).

https://github.com/UniversalDependencies/UD_Japanese-GSDLUW
https://github.com/UniversalDependencies/UD_Japanese-GSDLUW
https://github.com/UniversalDependencies/UD_Japanese-GSDLUW

