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Abstract

Neural network language models can learn a surprising amount about language
by predicting upcoming words in a corpus. Recent language technologies work
has demonstrated that large performance improvements can arise from simply
increasing ("scaling") the size of the data sets they are trained on (and, correspond-
ingly, the number of parameters in those models); accordingly, many contemporary
systems are trained on trillions of words. While largely beneficial to performance
on language applications, scaling has several downsides for both computational
psycholinguistics and natural language processing research. We discuss the sci-
entific challenges presented by scaling, as well as the benefits that would result
from human-scale language modeling research. In the second half of this paper,
we report on takeaways from two efforts to bring about human-scale language
model pretraining. First, we report on the first iteration of the BabyLM Challenge,
a shared task organized by the authors that asked participants to train a language
model on 100 million words or less. Second, we present experiments to answer
open questions from the findings of the BabyLM Challenge: namely, are a signif-
icant amount of computational resources required to achieve high performance,
even at such small scales? We find that high performance can be achieved at small
data scales and with typical academic-scale computational resources.
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1. Introduction

Connectionist modeling has been a core theoretical and empirical tool for
psycholinguistics research over the past three decades. It provides a key theoretical
paradigm for modeling how symbolic representations can arise in a distributed
system. Furthermore, testing the behaviors of connectionist models against human
data allows researchers to evaluate a variety of psycholinguistic theories, especially
in the areas of language learning and language processing. The focus of this article
will be on connectionist, or neural-network-based, language models (LMs). LMs
are data structures that predict the probability of a string of text. Generally, they
learn to model the distribution of units of text given some training dataset. (The
units of text are referred to as tokens.) In recent years, language modeling has
seen a surge in interest and popularity, due largely to advances in the underlying
technological methods, and their resulting generative AI technologies. These
advances have been driven largely by scaling (Kaplan et al., 2020)—i.e., increasing
the number of parameters in a language model, training it on larger and larger
amounts of data, or often both. This article takes a critical look at scaling, and
at the massive training dataset sizes associated with it, from a psycholinguistics
perspective. We argue that bigger is not always better, and that future success in
connectionist modeling of psycholinguistic processes will require balancing the
training and analysis of large models alongside models that are more humanlike
with respect to the scale of the training dataset.

First, we discuss the impact of scaling on the important, yet often “frictional”
(Pater, 2019) relationship between connectionist, deep-learning modeling and lin-
guistics. We outline two key ways in which connectionist modeling can contribute
to linguistics research, focusing on the role that can be played by language models,
which are algorithms that assign a probability to a string of text. We argue that
the utility of language models for psycholinguistics research is jeopardized by the
current trend toward larger and more data-intensive models. We propose that these
downsides can be mitigated by devoting effort toward building more data-efficient
connectionist models that are trained on more developmentally plausible datasets
in terms of size, genre, and input modality.

Second, we discuss the impact of scaling on machine learning (ML) and natural
language processing (NLP) research. Although generally beneficial for NLP
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applications, we argue that the scaling trend is not without its downsides, and
highlight three: First, the focus on evaluating language models based solely on
performance incentivizes scaling, at the cost of not incentivizing research into
data-efficient models (Linzen, 2020). More data-efficient models are essential for
cases of true data scarcity, for example, with proprietary datasets or for creating
language technologies for low-resource languages. Second, smaller datasets are
easier to curate and control for quality. Third, due to the cost of training models
at scale, the focus on scale produces a high barrier to entry and an environment
in which research teams might be relatively risk-averse. Both of these factors
can potentially lead to scientific stagnation. Again, we propose that both of these
downsides can be mitigated by devoting efforts toward building and training models
at smaller data scales. These models can be prototyped and tested more quickly
and cheaply, allowing for broader participation and faster innovation in machine
learning research.

In the rest of the paper, we present several contributions made in response
to the above concerns and proposed solutions. We present a summary of and
key findings from the BabyLM Challenge (Warstadt et al., 2023b), a shared task
organized by the authors of this paper that challenges participants to train language
models on the amount of data available to a typical human language learner. The
BabyLM Challenge was held at a large Natural Language Processing conference
in the fall of 2023, and received a large number of participants as well as national
press coverage (Whang, 2023). We identify several key technical findings from the
challenge and discuss their implications for psycholinguistics research: First, we
recommend two model architectural choices as good starting points for small-scale
language modeling—LTG-BERT (Samuel et al., 2023) and Contextualizer Xiao
et al. (2023). Second, we identify a training approach, called curriculum learning,
as generally ineffective. Note that all models were trained on English text and the
extent to which these findings generalize across typologically diverse languages is
therefore an open question.

The BabyLM Challenge raised several questions that cannot be answered by
analyzing the performance of submitted models alone. To answer these questions,
we therefore conduct a series of experiments testing hypotheses raised during
the challenge. Specifically, we investigate the role of the number of training
epochs (i.e., how many times a model sees its training data) for scaled-down model
performance, as well as a controlled comparison between the BabyLM winning
submission (ELC-BERT), and a more simple architectural variant on which it is
based (LTG-BERT). For the first experiment, we find that a large number of epochs
is not necessary for successful small-scale language modeling results, among the

3



Figure 1: Data Scale: Modern Language Models are trained multiple orders of magnitude more
word tokens than the amount available to a typical child. This image is based on Fig. 1 from
Warstadt and Bowman (2022).

architectures tested. For the second experiment, we find that the simpler, baseline
architecture performs as well as the BabyLM winning architecture.

2. Scaling of Neural Network Language Models

In the second half of the 20th century, natural language processing (NLP)
technologies were engineered by connecting a series of highly articulated, domain-
specific components. In a machine translation system, one component might be
responsible for aligning words between the source and target sentence, another
component responsible for homonym disambiguation, and another for scoring
the naturalness of the proposed text (Block, 1962; Brown et al., 1993). But in
the last decade, this paradigm has changed. Nowadays, the best-performing NLP
tools typically consist solely of a language model (LM), a data structure that has
been automatically learned via a training algorithm. During training, a language
model must optimize its parameters to predict the probability of a unit of text
(or token) given its preceding context.3 In order to adapt the underlying LM to a
variety of applications, after its initial training, called pretraining, it is trained on
a secondary objective—for example, to predict the sentiment of a sentence. This

3Sometimes, “language model” refers to a model that has access to both the preceding and
following context—most often, these are masked language models, like BERT. While this does not
fit the classic definition of a language model, current usage includes such systems.
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second training is called fine-tuning. Therefore, rather than a series of modular
components, this paradigm involves just one single system, the LM, which can be
adapted to a variety of tasks (e.g., Devlin et al. 2019). In the previous paradigm,
improving the system meant improving one of its component parts, but for neural
networks, breaking the model down into parts and attempting to improve each in a
modular fashion is less straightforward. After all, each component, or neuron, can
be connected to thousands or tens of thousands of other components at each layer
of the network. So how does one increase the performance of such systems?

This is where the field of NLP has benefited from a larger trend in computer
science—namely, the growing amount of data and computing power (Schaller,
1997; Coffman and Odlyzko, 2002). Neural-network-based systems that could
learn on larger amounts of data tended to outperform their competitors, even
without architectural changes compared to those competitors. For example, GPT-2
(Radford et al., 2019) improved substantially over its predecessor, GPT (Radford
et al., 2018), even though the two have very similar architectures; this is because
GPT-2 has more parameters and was trained on more data. More broadly, one
reason why transformers such as GPT and GPT-2 are so successful is that they were
designed to improve with increases in training dataset size. Repeated experiments
all pointed towards the benefit of scaling, not only in Natural Language Processing
but in other domains such as vision, leading to the so-called “bitter lesson” (Sutton,
2019): namely, that the best learning methods are general-purpose methods that
can leverage the most data and compute.

But this observation—roughly, that bigger is better—raised several important
questions, particularly because “bigger” is under-specified. When training deep
learning architectures, three high-level elements need to be balanced: the size of
the model (i.e., the number of parameters), the size of the training data, and the
number of computations that are performed during training.4 Scaling refers to the
practice of increasing these three components in a balanced way to achieve the best
model possible given one’s constraints. Research in “scaling laws” (Kaplan et al.,
2020) has yielded empirical discoveries for how to do this most effectively.5 A

4Modern computers store real numbers in data structures call floating-point numbers. Compute
costs are therefore measured in the number of floating-point operations per second, or FLOPs. In
this article, however, we will discuss compute costs as the number of times a model iterates over its
training dataset during training.

5Scaling laws are not laws in the physics sense—for one, scaling laws are different per architec-
ture, whereas physical laws are universal. Rather, neural scaling laws refer to highly predictable
reductions in loss (or, equivalently, improvements in word prediction abilities) when increasing the
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growing body of work has explored this question in recent years, both for natural
language technologies (Hoffmann et al., 2022; Muennighoff et al., 2024) as well as
other fields (Hesslow et al., 2022; Zhai et al., 2022). Recent results suggest that,
given a fixed compute budget, model architecture size and training data size should
scale proportionally (Hoffmann et al., 2022). This has led to an ever-growing
reliance on larger and larger training datasets, with current state-of-the-art models
in 2024 trained on over a trillion words of text. The increasingly larger training
data scales are visualized in Figure 1, which compares the training dataset size of
today’s LMs with the typical amount of human linguistic experience at the onset of
adolescence—under 100 million words (Gilkerson et al., 2017).

3. The Downsides of Scaling for Psycholinguistics

How can deep learning architectures contribute to our scientific understanding
of language? It is important to recognize that connectionist architectures were
not originally developed as tools for processing and manipulating text data, but
as models of human cognition: there is a rich tradition that uses these systems
to answer scientific questions about human vision, language and other aspects of
cognition (Rumelhart et al., 1986; Elman, 1990). In this section, we outline two
examples of the types of contributions that neural-network-based language models
can make for linguistics research (see also Linzen 2019). We argue that these
contributions are only valid under certain conditions, which are often violated by
large-scale models. As stated above, we focus on the role played by language
models, both because these models are particularly relevant for psycholinguistics
research and because the issue of scale is particularly important in this domain.
However, these arguments are not limited to language models, and can apply
broadly to any neural-network based architecture being used to model human
cognition.

3.1. Stimulus-Poverty Arguments
The first type of contribution uses neural networks to assess stimulus-poverty

arguments. Stimulus-poverty claims are used to argue for a particular perspective
on how children learn language and have been influential in the linguistics literature
since they were first introduced around fifty years ago (Chomsky, 1965, 1979).
Stimulus-poverty arguments point out that the primary linguistic data available to

number of parameters and training corpus size.
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children are compatible with a large number of hypotheses about how that data
is underlyingly structured, including many generalizations that are not observed
in the “target” language the child is trying to learn, or in any natural language.
However, despite this ambiguity, children routinely arrive at the correct linguistic
generalizations associated with their target language. The argument goes that this
successful learning cannot be driven by patterns in the data—after all, the data
are ambiguous. Therefore it must be due to an innate learning preference in the
child. The perspective that children are guided by inherently endowed learning
constraints is known as the nativist perspective on language acquisition (Clark
and Lappin, 2010). Stimulus-poverty arguments also point to the rapidity with
which children learn language as evidence that human infants do not entertain
a large number of (eventually) incorrect hypotheses about their language. This
suggests, again, that children are driven by inborn learning biases.

Neural networks, and particularly language models, can inform this argument
by offering one type of empirical evidence against stimulus-poverty claims (Lap-
pin and Shieber, 2007). If it can be shown that an artificial learner can acquire
the correct generalizations about a language without any linguistically-informed
learning biases, then it demonstrates that, in principle, this is possible for a human
language learner as well. Crucially, such evidence doesn’t prove that children
learn language without an innate learning bias. Rather, it shows a central claim
of the stimulus-poverty argument—namely, that learning is impossible without
a bias—to be false, therefore invalidating the argument. More broadly, neural
network language modeling provides a lower bound on what is learnable from data
by a domain-general, flexible learner. For a deeper discussion of the role of neural
network modeling in stimulus-poverty claims, please see the discussions in Wilcox
et al. (2023a); Warstadt et al. (2020b); McCoy et al. (2018); Yedetore et al. (2023).

How does scaling impact a model’s ability to contribute to stimulus-poverty
arguments? As argued in Warstadt et al. (2020b), neural networks can only disprove
stimulus-poverty claims if they are no more advantaged than a human learner,
with respect to both their inductive biases and their training data. If the network
has super-human resources, then successful learning of a particular linguistic
phenomenon no longer implies that this phenomenon is learnable, in principle, by a
human language learner. After all, the network may be relying on its super-human
capabilities in this case. In practice, how humanlike does a model learner have to be
for its behavior to bear on stimulus-poverty claims? This is an active area of debate.
There are some features inherent in neural network modeling that are unhumanlike
but necessary given the current computational paradigm. For example, people
learn language in social, interactive environments, but current effective techniques
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for language model pretraining involve training the LM to predict a word from
its context, without feedback from interactions with other agents. However, one
key area that can be controlled and is roughly comparable to a key feature of the
human linguistic environment is the amount of linguistic experience the model
receives during training.

Human language learners are exposed to approximately 3 to 7 million words
per year (Hart and Risley, 1995; Gilkerson et al., 2017). Therefore, by the time a
child turns 12, at which they have a decent level of linguistic competence, they have
experienced up to 100 million words. In comparison, many of today’s language
models have been trained on multiple orders of magnitude more data, with some
models seeing multiple trillions of words over the course of their training. It is fair
to say that this massive gap in data scale counts as one such superhuman advantage
that we would like to avoid. The difference in data scale is critical, specifically for
stimulus-poverty arguments, because they are based on the premise that certain
constructions are so rare that a child might never encounter them over the course
of language learning. It is not sound argumentation to disprove such an argument
using a language model that is trained on thousands of times more data than any
person will experience throughout their entire lifetime.

An additional reason why scaled-up language models bear less on stimulus-
poverty arguments has to do with training data genre and quality. Large language
models are trained on datasets of text scraped from the internet, whose content is
often either propriety or else poorly cataloged. Linguistics and cognitive science
textbooks or articles that discuss issues of learnability and give key examples may
be included in these training datasets. Therefore, while models trained at smaller
data scales have played an important role in assessing stimulus-poverty claims,
the continued focus on bigger and bigger models means that recent advances in
language modeling bear less and less on these issues.

3.2. Testing Probability-based Theories of Language Processing
The second type of contribution uses language models to empirically test

theories of language processing that rely on probability distributions over words.
In particular, language models have been important for developing and refining
theories for the role of probabilistic prediction in language processing. As an
example, we will discuss the impact that language models have made on the
development of surprisal theory (Hale, 2001; Levy, 2008). Since scientists first
started recording language processing behaviors, it has been widely observed that
words which are less predictable in context are more difficult to process (Ehrlich
and Rayner, 1981; Staub, 2015). Surprisal theory formalizes this observation by
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hypothesizing that the effort it takes to process a word is a (linear) function of its
information content, or surprisal. (The surprisal of a word is its in-context negative
log probability, i.e., s(wt) = �log2 p(wi | w1...i�1.) Previously, surprisal theory
was tested using non-neural-network based n-gram models (Smith and Levy, 2013)
(although note that Hale (2001), which originally proposed surprisal theory, used a
probabilistic context-free grammar (PCFG) language model). While such studies
provided important early validation of the theory, those that used n-gram language
models suffered from several setbacks, the most important being that the models
used to estimate probabilities had a fixed window length, meaning that any word
more than 5 words back was not factored into the estimate.

The advent of neural-network-based language models enabled researchers to
collect more accurate probability estimates, enabling a more rigorous empirical
assessment of surprisal theory. As a result, the relationship between word-level
probabilities and human language processing behaviors has seen a surge of interest
in the last five years: Using estimates from language models, studies have validated
the linear relationship between word-level surprisal and reading time (Shain et al.,
2022; Wilcox et al., 2023b), while others have challenged this original finding
(Hoover et al., 2022; Meister et al., 2021; Brothers and Kuperberg, 2021). Other
studies have investigated the surprisal–reading time relationship for cases where
people read grammatically incorrect or implausible material, finding that reading
times and surprisal values are poorly matched in these cases (Van Schijndel and
Linzen, 2021; Wilcox et al., 2021; Arehalli et al., 2022; Huang et al., 2024). Recent
work has gone beyond word-by-word reading times, and used estimates from
neural network models to argue that probability-based measures underlie decisions
to skip words during reading (Pimentel et al., 2023) or regress to a previous
word (Wilcox et al., 2024). Looking beyond linguistic processing, studies have
used neural-network-based architectures to investigate the relationship between
statistical co-occurrence and syntactic structure (Futrell et al., 2019; Hoover et al.,
2021). The common theme between all these works is that each uses neural network
based language models to estimate underlying word-level probability distributions,
which can then be used to better empirically test theories of language processing.

How does the bigger and bigger trend of language modeling put this type of
contribution in jeopardy? As language models grow in terms of architecture size
and training data, the way that they store information is increasingly different from
those of people. To illustrate this point, it has been shown that language models
memorize large passages of text from their training data and will often repeat this
text verbatim during generation tasks (Carlini et al., 2023), something that people
do not do during natural language production (although they are certainly capable
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of such tasks, e.g., actors memorizing a script). This tendency towards long-
form memorization as well as some similar types of biases, such as memorizing
details only in certain contexts (Yehudai et al., 2024), suggests that, while better at
language modeling, bigger models are worse for providing humanlike probability
distributions that can be used to further psycholinguistic theories.

A recent line of work has clearly demonstrated the disadvantage of bigger
models when it comes to modeling incremental reading times. To do so, Oh and
Schuler (2023) and Shain et al. (2022) measure a model’s predictive power—in
other words, how well surprisal values predict reading times. They show that as
models improve (i.e., their perplexity decreases and their ability to predict the
next word improves), their predictive power increases, which had been observed
previously (Goodkind and Bicknell, 2018; Wilcox et al., 2020), albeit not for all
languages (Kuribayashi et al., 2021). However, at a certain point, the trend reverses.
Oh and Schuler and Shain et al. observed that many of the models released in the
past few years, which achieve state-of-the-art performance on a variety of natural
language processing tasks, are actually worse than their smaller-scale counterparts
at predicting human reading times. The explanation is likely that these models
are very good at predicting low-frequency words, thus predicting faster reading
times for these items than is observed in the human data (Oh et al., 2024). While
it is not necessarily the case that smaller-scale models produce more humanlike
distributions, this work suggests that, in practice, smaller models are optimal for
the types of studies described above.

4. The Downsides of Scaling for Natural Language Processing

Effective NLP technologies have the potential to benefit society in several
ways: They can automate expensive and time-consuming language-related tasks
such as translation, summarization, document review, and copy editing, to name a
few. In addition, they can serve as natural-language interfaces for technological
systems, for example turning natural language queries into structured database
searches, or turning natural language directions into a route plan for an automated
vehicle. If successfully implemented, these capabilities will allow a wider variety
of users to access technological systems, therefore broadening the positive impact
these systems can have across society. Of course, the current focus on large-scale
language modeling is popular for a reason: it is highly effective. Language-
related tools have improved dramatically over the past half-decade, and this has
been, in large part, due to the effective scaling of their underlying neural network
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based architectures and training datasets. Nonetheless, scaling is not without its
downsides; we outline three here.

Lack of Data-Efficient Models. Extensive research has investigated how to make
language model fine-tuning (Houlsby et al., 2019; Hu et al., 2022; Dettmers et al.,
2023) and inference (Zafrir et al., 2019; Dettmers et al., 2022; Hoefler et al., 2021)
more parameter-efficient. Here, running inference on a model means obtaining its
predictions, which can be used to produce generated text, for example, in chatbot
applications. By parameter efficiency, we mean efficiency in terms of the size of
the model. Because inference costs scale with the number of users in commercial
settings, there has been a greater emphasis on reducing inference costs than training
costs. The result of this economic incentive structure is less focus on data-efficient
language modeling. However, data efficiency is becoming increasingly important
as the world is running out of new high-quality text data on which to train systems.
While more data is being created constantly, scaling research has found that
one needs an order-of-magnitude more data (and parameters) to produce a linear
increase in a model’s capabilities on NLP tasks (Kaplan et al., 2020). Therefore, the
pace of performance gains is likely to significantly decrease in the coming years,
unless more data-efficient methods can be developed, or become prohibitively
expensive to maintain.

Opacity and Controllability. Current at-scale datasets are opaque and expensive to
control. An opaque dataset is one whose properties and composition are not well
understood. Although there have been recent calls for better dataset documentation
(Gebru et al., 2021), most state-of-the-art LLMs are trained on datasets that are
proprietary, and therefore fully opaque, or whose properties are understood at
only a very high level. For example, the creators of The Pile (Gao et al., 2020), a
large and (admirably) open-source pretraining corpus, report that it is about 97%
English, but say they cannot provide a reliable estimate of which other languages
are represented in the dataset. Controllability refers to how easy it is to manipulate
the contents of a dataset, for example, to remove toxic or harmful words, or to
perform controlled interventions in order to run experiments. Because current
datasets are so large, it is both expensive and time-consuming to modify them,
and because they are so opaque, it is not guaranteed that any given intervention
will successfully change all of its intended targets. Because of this, much of the
research on removing toxicity and bias in language models has focused on methods
to change the trained model, rather than on changing the dataset on which it is
trained (e.g., Wang et al., 2022; Leong et al., 2023; Ouyang et al., 2022).
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Barrier to Entry and Homogeneity. Scaling produces a high barrier to entry for
what is considered cutting-edge research. The training budgets for current large-
scale language modeling projects run into the hundreds of millions of dollars, due
to the required personnel, computer hardware, and energy costs (Sevilla et al., 2022;
Strubell et al., 2019). This results in a homogeneity of research directions, as those
who can afford to participate in this research tend to be large-scale private industry
groups funded by large technology corporations. Additionally, this high-risk
research program can produce a risk-averse research culture: if it costs significant
amounts of money and compute to produce large language models, groups will
be more likely to focus only on methods that are highly likely to succeed. This
increases the likelihood of scientific stagnation.

There are several proposed ways to broaden and democratize language model
pretraining, including distributed (Dean et al., 2012) and federated (McMahan
et al., 2017) training methods. However, one additional benefit of scaled-down
pretraining over these other training approaches is that, rather than splitting the
training cost between multiple parties, scaled-down pretraining simply lowers the
cost altogether. This means that new architectures and methods can be prototyped
and tested quickly and cheaply, and that coordination between groups is not
necessary. Thus, scaled-down pretraining is a beneficial paradigm alongside
distributed and federated training as a way to democratize and broaden participation
in NLP and ML research.

5. Our Recommendations for Human-scale Language Modeling

Scientific progress that takes advantage of the synergies between psycholin-
guistics and NLP will require a dedicated focus on data-efficient and human-scale
language modeling. Below, we outline several concrete proposals for how this can
be accomplished:

• A curated set of cognitively-inspired training datasets. Datasets should be
at “human scale,” i.e., commensurate with the amount of experience people
receive within a given domain Linzen (2020). Datasets should focus on
the types of language people experience in their day-to-day lives—i.e., not
just text, but also audio, transcriptions of audio, and/or aligned multi-modal
data. Two crucial types of data that are currently under-served are aligned
text–image and text–video datasets. These datasets should be open-source
and well-documented—for example, with datasheets (Gebru et al., 2021).
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• A curated set of “preferred models” for psycholinguistics research. The
models in this set should be open-source, easily accessible, and available in
multiple languages. They should be trained on open-source datasets whose
properties are well known, such as the cognitively-inspired ones described
above. Scripts should be available to easily extract word-level probabili-
ties from these models, enabling broad access in the psycholinguistics and
linguistics communities.

• Incentives for data-efficient and small-scale language modeling research.
Incentive structures should be developed to encourage research that explores
data-efficient pretraining. Incentives could include workshops or shared
tasks, such as the BabyLM Challenge discussed below, but also special
issues of journals dedicated to human-scale pretraining (such as the issue in
which this article is published!)

In the next sections, we report on two efforts undertaken by the authors to
implement the above recommendations.

6. Incentivizing Human-scale Language Modeling: The BabyLM Challenge

Data Availability. For 2023 BabyLM Challenge resources, please see the reposi-
tory for last year’s evaluation pipeline, which contains all code and data used in
evaluating submissions. All results are hosted on DynaBench at this URL. The
BabyLM training corpora are available here.

The BabyLM Challenge was a shared task that asked members of the NLP
and psycholinguistics community to train a language model on the amount of
linguistic data available to a human language learner, roughly 100M words or less.
The challenge was held in December 2023 at CoNLL (the SIGNLL Conference
on Computational Natural Language Learning). In this section, we provide an
overview of the challenge, describe the various approaches taken by participants,
and highlight key findings about effective strategies for pretraining language models
on a human-sized dataset. For more details on the challenge, please refer to the
original call for papers (Warstadt et al., 2023a). For more details on the submissions,
please refer to the findings paper (Warstadt et al., 2023b).

6.1. The Structure of the Challenge
Tracks. Submissions to BabyLM were required to conform to one of three sets of
guidelines, termed tracks. The three tracks were Strict, Strict-Small, and Loose.
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# Words

Dataset Domain Strict-Small Strict Proportion

CHILDES (MacWhinney, 2000) Child-directed speech 0.44M 4.21M 5%
British National Corpus (BNC),1 dialogue portion Dialogue 0.86M 8.16M 8%
Children’s Book Test (Hill et al., 2016) Children’s books 0.57M 5.55M 6%
Children’s Stories Text Corpus2 Children’s books 0.34M 3.22M 3%
Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2020) Written English 0.99M 9.46M 10%
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 3.09M 31.28M 31%
QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 1.04M 10.24M 11%
Wikipedia3 Wikipedia (English) 0.99M 10.08M 10%
Simple Wikipedia4 Wikipedia (Simple English) 1.52M 14.66M 15%
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.12M 1.18M 1%

Total – 9.96M 98.04M 100%

Table 1: The datasets we released for the Strict and Strict-Small tracks of the BabyLM Challenge.
We present the number of words sampled from each of the sub-corpora that we include.
1http://www.natcorp.ox.ac.uk
2https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus
3https://dumps.wikimedia.org/enwiki/20221220/
4https://dumps.wikimedia.org/simplewiki/20221201/

Participants in all tracks were allowed a constant number of English-language
training tokens—100 million in Strict and Loose and 10 million in Strict-Small—
to be used in total for all software used in the pipeline. This data was released
by the organizing committee and is described, in detail, in Section 6.2. Loose
track submissions were encouraged to train on data beyond the linguistic text data
provided through the shared task, for example by conducting additional training on
speech audio signal, code, music, or visual input. The Loose track also permitted
the use of expert-annotated data, but any language data used to train the language
model or auxiliary models counted towards the 100M word budget. For example, a
Loose track submission could train a parser on the Penn Treebank (Marcus et al.,
1993) which could be used to parse the pretraining corpus, as long as the number
of words in the Penn Treebank plus the words from the pretraining corpus used by
the submission totaled less than 100M.

Language model training can involve making several passes over its dataset,
where each pass is called an epoch. For the challenge, participants were allowed
to train for as many epochs as they wished. That is, multiple passes were not
counted towards the 100M or 10M budget. While it is unlikely that humans process
data iteratively in a manner similar to epoch-based training, there is evidence
that humans do repeat some of the information they process to themselves, for
example in memory replay (Carr et al., 2011). This being said, the impact of epoch
count was one important question raised by the challenge, which we address in
experiments reported in this paper, in Section 7
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6.2. Creating a More Cognitively-Plausible Pretraining Corpus
Language model training datasets are typically constructed from internet

scrapes. They include text downloaded from web pages, online resource sites
such as Wikipedia, and forums such as Reddit. In addition, they may include a
large amount of non-linguistic content, such as computer code. As part of this
challenge, we created a pretraining corpus that deviated from this typical composi-
tion and was inspired by the input to children during language acquisition, which
we refer to as the BabyLM Corpus. The contents of the corpus are summarized
in Table 1. For more detailed descriptions of the respective data sources, please
see Appendix A of Warstadt et al. (2023b). Submissions to the Strict track were
required to train exclusively on this corpus. Submissions to the Strict-Small track
were required to use a scaled-down version of the dataset, approximately 10% the
size of the Strict-track corpus, with data sources kept in the same proportions as the
full 100M word corpus. Our goal was not to create a dataset that was fully faithful
to the developmental experience—which includes complex social interaction, as
well as huge amounts of visual information—but rather to push current pretraining
datasets in the direction of cognitive plausibility. When assembling the data, we
considered a variety of factors:

Dataset size. The pretraining corpus for the Strict track contained under 100M
words, and the corpus for the Strict-Small track contained under 10M words.
Children are exposed to at most 10 million words a year (Hart and Risley, 1995;
Gilkerson et al., 2017). Choosing the beginning of adolescence (age 12) as a cutoff,
therefore, the dataset should be around 100M words. The 10M word Strict-Small
dataset corresponded to the amount of input in the first two-to-three years of
development.

Text Domain. The majority (⇡ 56%) of the pretraining corpus was sourced from
transcribed or scripted speech. This choice was made because much of the input
to the typical child comes from face-to-face interaction, either through speech
or sign (though this proportion decreases with age as consumption of written
media increases). The speech/sign–first experience of human language learners
contrasts with standard LM training corpora, which consist mostly of text that was
intended to be read and is likely edited in many cases. The choice to use transcribed
speech may be particularly relevant when it comes to grammar learning, as some
grammatical constructions, such as nominalizations and passives, are far more
frequent in writing, while others, such as first- and second-person pronouns, are
more frequent in speech (Biber, 1991).
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One other consideration was the genre of the transcribed speech. Child-directed
speech has been used as the sole or primary data source in some previous work
aiming to model child language acquisition with LMs (Reali and Christiansen,
2005; Perfors et al., 2011; Pannitto and Herbelot, 2020; Huebner et al., 2021;
Yedetore et al., 2023). While it is not necessarily true that all children have access
to a large amount of child-directed inputs (as separate from overheard adult-to-
adult interactions), many researchers hypothesize that children will learn particular
words or structures more quickly given access to simpler child-directed inputs
(see, e.g., Foushee et al. 2016, Shneidman and Goldin-Meadow 2012). That said,
children are routinely exposed to adult-to-adult interactions, and the extent to
which adults vary their language when speaking to children varies greatly between
cultures and socio-economic groups (Cristia et al., 2019). Accounting for these
considerations and the availability of high-quality child-directed speech/text, about
40% of the data in the BabyLM Corpus came from sources either intended for
children or appropriate for children, including child-directed speech, children’s
books, educational videos, and simplified English. Note, however, that we still
do include sources written for adult readers, including Wikipedia articles and
selections of books from Project Gutnberg.

6.2.1. Preprocessing
We performed minimal preprocessing, mostly to remove document meta-data,

like XML tags or speaker and dialog act annotations. We preserved newlines in the
original texts, which sometimes used newlines to delimit paragraphs, sometimes
sentences and sometimes different documents. This means that the use of newlines
as separators varies across the BabyLM corpus. For sources that we did not use
in their entirety, we downsampled by randomly selecting chunks of 2000 lines or
longer.6 More details about the preprocessing steps are available in Warstadt et al.
(2023b). The code and instructions for downloading and preprocessing the raw
data are publicly available.7

6.3. Evaluating Language Models’ Linguistic Abilities
To evaluate the trained language models’ linguistic abilities, we provided a

pipeline that would automatically evaluate LMs on a wide range of linguistic
tasks. The pipeline was released as a public repository on GitHub, 8 and supported

6We used large chunks to preserve long-distance linguistic and narrative dependencies.
7https://github.com/babylm/babylm_data_preprocessing.
8https://github.com/babylm/evaluation-pipeline
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models that were implemented using the HuggingFace library, which is a popular
library for training language models and running inference. To submit to the
challenge, users were required to (i) upload a link to their model (on any file-hosting
service), and (ii) provide model predictions for all test samples in a given task;
we provided a template specifying the format of the predictions file. Submissions
were made via Dynabench (Kiela et al., 2021), which is a open-source platform
that hosted a leaderboard, ranking the submitted models by their overall score for
the competition.

Our pipeline mostly consisted of well-known NLP evaluation benchmarks.
Because of this, many tasks contained vocabulary that was not contained in the
BabyLM corpus. To address this mismatch, we filtered each task according to its
lexical content: if an example contained any words that appear less than twice
in the Strict-Small training corpus, we excluded the example. Otherwise, each
task was presented in its original format. For details on the filtered datasets, see
Appendix B of Warstadt et al. (2023b).

6.3.1. Main Evaluation Tasks
Our evaluation tasks came in two different paradigms. The first—called zero-

shot evaluation—relied on obtaining outputs from the pretrained models without
giving them any additional instructions or fine-tuning examples. In our case, all
of our zero-shot evaluations came from the BLiMP benchmark (Warstadt et al.,
2020a). BLiMP consists of tasks that evaluate if the language models’ predictions
are consistent with the syntactic structure of English. Each example consists of
a minimal pair of sentences, where one sentence is acceptable and the other is
unacceptable, differing as minimally as possible from the acceptable sentence. A
model is correct on a given example if it assigns a higher probability to the correct
sentence in the minimal pair. We also released a supplement to the BLiMP tasks,
which tests phenomena not captured by BLiMP (see §6.3.2).

In the second type of evaluation, we fine-tuned the model on a specific NLP
task, such as predicting entailment relationships between sentences, by continuing
to train it on several further examples. This type of evaluation is useful because
during fine-tuning one can change the training objective of the model, meaning
it can be adapted into a tool for assigning categories to an input or giving binary
judgments. Our fine-tuning evaluations included a subset of (Super)GLUE (Wang
et al., 2018, 2019), which consists of a variety of language-related NLP tasks. The
majority of these tasks involve fine-tuning the model to perform classification,
given an input, which consists of either one or two sentences. For example, in
natural language inference (NLI), a model is given a premise sentence and a hy-
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pothesis sentence and has to categorize relationship between them as entailment,
contradiction or neutral. An example premise is Three tall boys are playing
soccer, and a hypothesis is Some boys play sports. Other NLP tasks for which we
fine-tuned models included sentiment classification (SST-2), where the model has
to classify a text as either positive, neutral or negative; question answering (BoolQ,
MultiRC); acceptability judgments (CoLA); and commonsense reasoning (WSC).

6.3.2. Hidden Tasks
In addition to the GLUE and BLiMP-based tasks, we released three “hidden”

evaluation tasks a few weeks before the challenge closed. These were: a supplement
to BLiMP, the Mixed Signals Generalization Set (MSGS), and an age-of-acquisition
(AoA) prediction task. MSGS and the BLiMP supplement were mandatory, while
AoA prediction was provided as an optional additional analysis for participants.
The motivation for using these hidden tasks was to prevent our evaluations from
rewarding models that learned the patterns in their training data that allowed them
to perform well on BLiMP and GLUE evaluations, but could not generalize to
unseen test cases. Below, we briefly describe these tasks.

BLiMP Supplement. This task included five test suites consisting of BLiMP-style
minimal pairs that cover areas of linguistic knowledge not tested by BLiMP: hyper-
nym reasoning, question formation, turn-taking, and question-answer congruence.
The test suites were semi-automatically generated using manually filled templates.
As with BLiMP, models were evaluated in a zero-shot manner, by comparing the
probabilities of the sequences in a minimal pair, under the assumption that the
acceptable sequence should be more probable than its unacceptable counterpart.
For more details, see Section 5.1.1 and Appendix C in Warstadt et al. (2023b).

Mixed Signals Generalization Set. The Mixed Signals Generalization Set (MSGS;
Warstadt et al., 2020b) is a text classification task that evaluates the inductive
biases of language models. For a MSGS subtask, models were fine-tuned on an
ambiguous training set where the labels were consistent with both a syntactic
generalization and a surface generalization, and then evaluated on examples that
disambiguate which generalization the model converged on (if any). Example
surface features include things like sentence length, orthography, or whether or not
the sentence contains the word the. Example linguistic features include whether
or not the sentence contains an irregular past-tense form, or whether it contains a
control construction. Ideally, models would be more sensitive to linguistic features
than surface features, as a systematic preference for abstract linguistic properties
allows models to generalize more robustly to unseen structures. The metric for
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MSGS is the Matthews correlation coefficient between the model’s predictions and
the labels according to the linguistic generalization on the test set. A coefficient
of 1 corresponds to a systematic linguistic generalization, and -1 to a systematic
surface generalization.

Age-of-acquisition Prediction. Optionally, participants could evaluate on the age
of acquisition (AoA) prediction task of Portelance et al. (2023). During language
acquisition, children tend to acquire words at different ages. For example, mommy
is almost always acquired before drawer or green. The question of what predictions
age of acquisition (AoA) for words is a subject of ongoing research. For this task,
AoA is defined as the time at which 50% of children are reported by their parents
to produce a given word, using the parental reports of Goodman et al. (2008).
The AoA prediction task compares LMs’ word surprisals with children’s AoA of
the same words. Language models’ surprisals are converted into an AoA score
by asking to what extent they increase the predictive power of linear regression
models trained to predict age of acquisition over baseline models that only include
word frequency and concreteness ratings.9 While we did not require participants
to submit these scores as part of their predictions, we provided code so that they
could include this score as an additional analysis point in their paper submissions.
Seven teams (22.6%) evaluated on the AoA prediction task. For more results and
discussion, see Appendix E of Warstadt et al. (2023b).

6.3.3. Task Aggregation
To compute the aggregate score across tasks, we weighted BLiMP and the

BLiMP-supplement together at 50% (weighting all sub-tasks equally), (Super)GLUE
at 30%, and MSGS at 20%. This weighting scheme was arrived at heuristically,
though we did observe that the winners for each track were stable across a wide
range of reasonable weightings. Our online submission portal, Dynabench, allowed
users to specify a custom task weighting to compute an alternative aggregate score.

6.4. Baselines and Skylines
Baselines. To provide simple baselines for our evaluation tasks, we trained mul-
tiple models on the data released for Strict-Small and Strict tracks and evaluated

9It is not clear whether optimizing LM performance on this task necessarily leads to language
models that can more accurately predict a word given its context. Therefore, this task was included
more as a measure of how well LMs align with humans—and thus, as a measure of their usefulness
as cognitive models of language acquisition—rather than as a measure of quality or performance.
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Figure 2: Number of participants who submitted to each track, with multiple submissions counted
once.

them on the evaluation tasks. We provided three baselines, using popular language
modeling architectures: OPT-125M (Zhang et al., 2022), RoBERTa-base (Liu et al.,
2019), and T5-base (Raffel et al., 2020). For details on the architectural choices
and hyperparameters, see Section 5.4 of Warstadt et al. (2023b). Although most
of these hyperparameter choices were loosely inspired by Huebner et al. (2021),
we expected that the specific choices could be further improved and left these
potential improvements as possible topics for submissions. We found that our base-
line models achieved reasonable performance on the evaluation tasks, with clear
improvement from the Strict-Small to Strict datasets, and a notable gap between
their performance and the performance of our skyline model, described below.

Skylines. To get an approximation of how well a larger model could perform in
our task and setting, we chose two large-scale models and rand them through our
evaluation pipeline. The two models we used were Llama 2 (Touvron et al., 2023)
(the variant with 70 billion parameters) and the RoBERTa-base model. This was
meant to provide a comparison between our BabyLM models and the state of the
art in 2023. 10
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Figure 3: Summary of BabyLM Submission Results: Each point represents an official model
submission. Scores are broken down into performance on BLiMP (x-axis), GLUE (y-axis) and
MSGS (color). Submissions that achieve an aggregate score above 0.6 are labeled in gray. Green
dashed lines show Llama 2 skyline performance, and green solid lines show the human performance
ceiling.

6.5. Results and Analysis
We received 31 papers and 162 models in total. Some participants submitted to

multiple tracks; we show data for unique participants in Figure 2. The results that
achieved an aggregate score across both BLiMP and GLUE of above 0.6 are shown
in Figure 3, with the scores of the top-performing models in each track detailed
in Table 2. In the figure, dashed green lines show the performance of the Llama 2
skyline. Solid green lines show human performance on GLUE reported in Nangia
and Bowman (2019), and human performance on BLiMP as reported by Warstadt
et al. (2020a). For the GLUE benchmark, human scores are obtained by training
naive crowd workers on each NLP task—for example, teaching them to classify
entailment relations between sentences—as well as giving them 20 examples. For
the BLiMP benchmark, scores are obtained by asking naive participants to choose
between sentences in a forced-choice task, and calculating the proportion of times
each individual chooses the grammatical variant.

10One point of difference between the Llama skyline and our BabyLM models was that we
evaluated Llama 2 on (Super)GLUE using in-context learning. In this setting we get the model to
solve each GLUE task by showing it a few examples and prompting it to complete the relevant test
example. We do this because fine-tuning these at scale LLMs is computationally expensive.
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Model BLiMP GLUE MSGS BLiMP-Supp. Aggregated
Llama 2 0.84 0.84 0.26 0.75 0.71
RoBERTa-Base 0.87 0.79 0.24 0.76 0.70

St
ric

t

ELC-BERT Charpentier and Samuel (2023) 0.85 0.78 0.47 0.77 0.74
BootBERT Samuel (2023) 0.86 0.79 0.28 0.72 0.70
McGill-BERT Cheng et al. (2023) 0.84 0.72 0.25 0.71 0.67
Best Baseline (OPT-125M) 0.75 0.70 0.13 0.68 0.60

St
ric

t-S
m

al
l ELC-BERT Charpentier and Samuel (2023) 0.80 0.74 0.29 0.67 0.66

MLSM Berend (2023) 0.79 0.71 0.17 0.57 0.61
McGill-BERT Cheng et al. (2023) 0.75 0.70 0.13 0.68 0.60
Best Baseline (OPT-125M) 0.63 0.62 0.10 0.53 0.50

Lo
os

e Contextualizer Xiao et al. (2023) 0.86 0.73 0.58 0.63 0.73
McGill-BERT Cheng et al. (2023) 0.80 0.68 -0.02 0.57 0.57
BabyStories Zhao et al. (2023) 0.78 0.61 0.03 0.65 0.56

Table 2: Top 3 systems for each track, as well as the baseline model with the highest aggregate score.
We also show “skyline” models: RoBERTa-base and Llama 2 trained on their full pre-training
corpora. Each task score is simply the mean score across each of its subtasks. The aggregate score
is a weighted average of each task. We bold the highest-scoring system for each task within each
track.

Below, in Section 6.5.1, we break down the submissions based on the type
of approach they use, and discuss the effectiveness of these different approaches.
Then, in Section 6.5.2, we discuss the winning models in each track, and what they
can tell us about human language learning and processing.

However, before we discuss the details of any model or approach, we start by
pointing out a few high-level takeaways from these results, starting with compar-
isons between the different tracks. The strongest results were achieved by models
in the Strict track. Given the Strict track’s larger training corpus relative to the
Strict-Small corpus, it is not surprising that these models performed better. How-
ever, there are two interesting trends: First, Strict models did not outperform those
in Strict-Small by a large amount, even though the size of training data was an order
of magnitude larger. For example, there are only two models in the Strict track that
achieve higher GLUE scores than the best-performing Strict-Small model. Second,
models in the Loose track tended to perform worse in the aggregate than those
in the Strict-Small track, even though they potentially had access to additional,
non-linguistic, data. One conclusion we can draw from this is that learning from
multiple modalities of data presents a challenge in its own right, and that current
model architectures are not optimized to efficiently utilize multiple types of inputs
during training.

The other important high-level takeaway is that many BabyLM models are
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very close to the Llama 2 skyline, and also close to achieving human-level per-
formance on BLiMP and GLUE (i.e., they are near the green lines in Figure 3).
Strong performance could be expected in the case of (Super)GLUE, where mod-
els were fine-tuned with additional data, but we note that even for BLiMP, the
top-performing model is only about 3% shy of human performance. Given that
successful training on developmentally plausible corpora could have ramifications
for cognitive and linguistic theories of learnability, these results point to two impor-
tant takeaways: (1) Human-level results have not been achieved yet. However, (2)
given the strong performance of the top-scoring models, human-level results appear
likely to be achieved very soon, possibly within the next few years. Of course, one
possible criticism of current metrics, like accuracies on BLiMP, is that they do not
accurately measure linguistic competence. We are sympathetic to such concerns,
but we also note that BLiMP, and other related syntactic benchmarks such as those
presented in Marvin and Linzen (2018) and Gauthier et al. (2020), were specifically
designed to mimic the types of tests invented by linguists and cognitive scientists
to reveal syntactic competence in humans—i.e., they are all based on minimal
pair sentences. Thus, while it is imperative to continue building more compre-
hensive and larger datasets, we believe it is fair to say that the close-to-human
scores observed in the BabyLM challenge on BLiMP reflect genuine grammatical
generalizations learned by the models. This evidence is supplemented by MSGS
results, which were generally positive, indicating a preference for structural, as
opposed to surface-level, syntactic generalizations.

6.5.1. Common Methods
To help us understand which approaches were effective, we hand-coded each

submission based on the method(s) it employs. We show the breakdown of ap-
proaches in Figure 4 and we visualize the performance of different methods in
Figure 5. For more information about the common approaches, as well as brief
descriptions of submissions in each category, see Appendix A. For the purposes
of the remaining discussion, the most important approaches that the reader should
be aware of include curriculum learning, architectural modifications, and data
preprocessing, which we define briefly below. In curriculum learning, the dataset
is organized according to some metric, often a simplicity metric, with models
first training on simpler examples before graduating to more difficult examples.
It is motivated by the idea that successful learning depends on “starting small”
(Elman, 1993)—or in other words, that presenting data in a random order is less
helpful than presenting data in a meaningful order with gradually more complex
concepts (Bengio et al., 2009). Curriculum learning has some parallels to human
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Figure 4: Total number of submitted models that used each of the nine approaches in our typology.
We count at most one submitted model per participant per track.

language learning, in particular to child-directed speech, a genre of speech that is
characterized by its reduced vocabulary size and simple constructions (Cameron-
Faulkner et al., 2003). Some evidence suggests that child-directed speech helps
language learning, especially with early vocabulary development and reading skills
(Rowe, 2008). That said, other work suggests that language learning proceeds at
similar paces in groups where child-directed speech is not employed as frequently
(Ochs, 1982; Heath, 1983). Curriculum learning was by far our most common
approach, however it was found to produce only marginal gains above baselines.
Data preprocessing involves making modifications to the underlying data, or the
way the data is presented to the model, that does not involve ranking the entire
dataset according to some metric. Finally, architectural modifications involved
producing some novel architectural innovation that went above and beyond chang-
ing existing parameters that come pre-built into current machine learning models,
such as the number of training examples the model sees at any given time, or the
rate at which it updates its parameters during training. Data preprocessing and
architectural modifications were found to be the most effective strategies in our
meta-analysis.

All of the models submitted to the competition used a pre-existing backbone
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architecture, with many submissions based on BERT (Devlin et al., 2019), GPT
(Radford et al., 2018), and Llama (Touvron et al., 2023). Although there are several
differences between these models, the most significant of these is that BERT is a
masked LM, meaning it predicts a word given its surrounding context, whereas
Llama and GPT are autoregressive LMs, meaning that they predict a word given
only its preceding context. In Figure 6, we separate models by this underlying
architecture.

6.5.2. Winning Submissions
Below, we discuss the winning submissions from each track in greater detail

and ask what, if anything, they can tell us about human language learning or
language processing.

ELC-BERT. The winner of both the Strict and Strict-Small tracks was ELC-BERT,
(Charpentier and Samuel, 2023). This model, as well as the runner-up submission
Boot-BERT (Samuel, 2023), used as their starting point the LTG-BERT architecture
from Samuel et al. (2023). Both of these submissions make additional architectural
changes on top of the LTG-BERT backbone. Specifically, the ELC-BERT adds a
mechanism, called skip connections or residual connections, for information to flow
between layers of the network, allowing representations computed in early layers
to directly impact computations at higher layers of the network. However, scores
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Figure 6: Effect of Backbone Architecture: Each point represents a submission. Shape indicates
the challenge track. Gray bars show within-category aggregates.

from LTG-BERT submitted by the authors suggest that this backbone architecture
plays a large role in the submissions’ successes. Therefore, here, we will focus on
LTG-BERT and discuss its relationship to hypothesized cognitive architectures of
language learning and processing.

LTG-BERT’s main contribution is a synthesis of several optimizations to the
Transformer architecture, namely:

1. Layer normalization, following Shleifer et al. (2021). This procedure scales
and centers the models’ weights at each layer.

2. GEGLU feed-forward modules (Shazeer, 2020). Here, feed-forward layers
learn two sets of weights and biases. One of these is not passed through an
activation function, while the other is passed through a Gaussian Error Linear
Unit (GELU) activation function, which is similar to the more standard ReLU
activation function, except it is curved around zero.

3. Disentangled attention (He et al., 2021). Attention is a mechanism that
allows the model to learn the relative importance of connections between
its different input tokens. In most transformer models information about
word content and word position are shared in a single embedding. In this
attention mechanism, word content and word position are represented in
separate embeddings, which are both used to compute attention weights.
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4. Reducing attention layers’ weight initialization following Nguyen and Salazar
(2019). In this modification, weights in attention layers are initialized to be
smaller than is typical. This was proposed to help model convergence, in
general, not necessarily just in the small data-scale setting.

ELC-BERT includes an additional modification on top of these three. In ELC-
BERT the input to each layer is a weighted sum of the outputs of all previous
layers, meaning that the network can learn indirect connections between layers.
Another notable property of LTG- and ELC-BERTs is that all released versions
of these models have been trained for a large number of epochs. For example,
Charpentier and Samuel (2023) train models for over 450 epochs for their Strict
submission, and over 2000 epochs for their Strict-Small submission, which is much
higher than is standard practice. By contrast, we trained our baseline models for
about 20 epochs.

Taking a step back, what can these architectural modifications tell us, if any-
thing, about human language learning? First, given how many modifications the
LTG-BERT makes on top of the traditional transformer architecture, it is difficult
to disentangle which changes are specifically responsible for its performance gains.
Furthermore, certain aspects of the architecture are likely important because they
mitigate technical issues in the procedure used to train language models, called
back-propagation. For example, the layer normalization discussed above ensures
that all the weights learned by the model are on the same scale, which speeds up
training time and makes it more likely that the model will converge to a stable
set of successful weights. These changes are unlikely to reveal anything about
human language processing. However, other features of the architecture are easier
to compare directly with hypothesized features of human cognitive architectures.
For example, relating to the disentangled content and positional representations, it
has been argued that, at least during reading, people maintain information about
the locations of words on the page, separately from their content (Kennedy, 1992;
Kennedy et al., 2003). This separate representation of word location has been ar-
gued to reduce cognitive load and facilitate efficient language processing, however,
connections to efficient language learning have not been explored. Moving beyond
reading, the notion of location doesn’t have to mean location on a page. Rather,
this representational approach might allow models to learn more abstract con-
cepts about location, such as abstract syntactic roles. Decomposition along these
lines—i.e., separate learning and representation of content and form—has been
proposed previously as a mechanism for explaining how symbolic structures are
embedded inside distributed systems (Smolensky, 1990). Therefore, while strong
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performance of LTG-BERT alone tells us little about human language processing,
it does point to directions that can serve as the basis for future research.

Contextualizer. The winner of the Loose track was the Contextualizer model of
Xiao et al. (2023), which used a data processing scheme in which extra training
samples are created by combining chunks of text from different sources in the
dataset. Repeating this process 40 times for each chunk gives an artificially
augmented dataset that has as many training samples as a four billion word dataset,
but only uses 100 million words. The insight behind the Contextualizer model is
that people may hear the same words, or chunks of words, over and over again, but
that the varying context helps them to learn novel information about the word’s, or
chunk’s, meaning and proper use. Furthermore, it has been argued that repetition
of the same chunks in different environments helps models to learn the hierarchical
structure of language. For example, if a child hears the NP The big blue ball as
both a fragment answer to a question and also as a fronted element in a sentence,
this may provide evidence that it counts as a single constituent. Therefore, this
type of data augmentation has been previously argued, e.g., in Andreas (2020) to
give models a bias towards compositionally by teaching them that chunks can be
recombined in different ways.

McGill-BERT. This submission from Cheng et al. (2023) was runner-up in the
Strict and Loose tracks. The authors improve over the original BERT model by
modifying two features: First, they shorten the context window, so the model only
learns more local relationships between words. Second, they modify the way that
training examples are presented to the model, splitting up examples into individual
sentences, rather than in chunks that may contain multiple sentences. Rather
than telling us something about psycholinguistic processes, the authors propose
that this regime is particularly well-suited to the BabyLM training dataset, in
particular its CHILDES portion. Because we include only child-directed utterances
of CHILDES, and remove any intervening child-produced utterance, each sentence
does not necessarily follow from the previous one. Therefore, learning to predict
these sentences separately, rather than as a single cohesive unit, may constitute an
easier learning task.

CLIMB: A compelling negative result. In addition to track winners, we gave several
awards to outstanding papers, one of which was “CLIMB: Curriculum Learning
for Infant-inspired Model Building” (Martinez et al., 2023). This work proposed
a typology for, and conducted a thorough evaluation of curriculum learning. The
authors vary the curriculum based on three features: First, the authors experiment
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with several vocabulary curricula, in which models begin training over a simple
vocabulary that slowly grows in size. For example, an early vocabulary might
only consist of frequent words or nouns. Second, the authors experiment with
curricula based on data difficulty by defining ways to measure difficulty both
from an objective function (e.g., how long is the sentence?) and also from the
perspective of the model (e.g., which unseen example does the model find the most
likely?). Third, the authors explore curricula based on a model’s objective function,
in particular, the level of granularity at which the model must make its prediction,
for example, making predictions over words vs. parts of speech.Although Martinez
et al. find that none of the curricula within this typology leads to widespread
improvements across the evaluation tasks, the exhaustiveness of this search and
the careful controls and baselines in the study make this negative result a valuable
contribution. Namely, it suggests that curriculum learning is unlikely to be effective
for developmentally plausible language models, at least in its current form.

We take these overall negative results for curriculum learning as fitting into
an ongoing debate about the role of cognitive and data limitations in language
learning. The main locus of this debate is the less is more hypothesis (Newport,
1988), which suggests that children’s cognitive limitations force them to attend to
smaller, compositional linguistic units, which is overall beneficial for the learning
process. This hypothesis has been supported by several types of experimental
studies, including studies showing that reducing adult’s cognitive capacities makes
them learn in a manner closer to children (Cochran et al., 1999). Evidence for the
less is more hypothesis has also been found in computational modeling studies,
for example, Elman (1993) found that a simple recurrent network can learn the
patterns of English embedded clauses, but only if trained initially on simple sen-
tences that did not include embedded clauses, or on networks that were initially
memory constrained. This led Elman to suggest “starting small” as an approach
for successful language model training. However, the model in Elman (1993) was
trained on an artificial version of English. Running similar tests on more realistic
datasets, Rohde and Plaut (1999) do not find evidence that “starting small” is
beneficial to performance. Rather, they find that withholding complex examples
at the beginning of training can hinder language learning in connectionist models.
We take the negative results from Martinez et al. (2023), as well as other BabyLM
submissions, as being in line with the conclusions of Rohde and Plaut (1999).
They suggest that simplifying the early stages of LM training does not result in
better learning outcomes, at least for small-scale datasets. We note, however, that
these results should not be taken as evidence against the less is more hypothesis in
humans. Just because the language models tested do not benefit from simplicity
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early in training does not mean that children do not benefit from it. Rather, it may
suggest that the role of resource limitations may be one key difference between
LMs and human children.

6.6. Interim Discussion
The BabyLM Challenge led to a number of concrete outcomes aligned with

the vision for more human-scale language modeling outlined in section 5. First, it
drew attention to the challenge of data-efficient language modeling, and provided a
venue for dozens of participants to share ideas and resources. It produced a more
cognitively plausible pretraining corpus, which will facilitate human-scale model
training going forward. Finally, the results of the challenge produced a number
of lessons that will help to improve future small-data language models, including
the effectiveness of the LTG-BERT architecture, and the relative ineffectiveness of
curriculum learning.

One interesting outcome of the challenge is that successful submissions were
not directly inspired by theories from human cognition. For example, LTG-BERT
is successful because of several architectural modifications, none of which have a
direct basis in the cognitive science literature. (That being said, as noted above,
there are several parallels between these modifications and proposals for language
learning and processing architectures in people.) Similarly, the McGill-BERT
submission achieves impressive performance by changing key hyperparameters,
such as context length, and how the data is presented to the model. Again, neither
of these takes direct inspiration from cognitive theories. It is possible to read this
trend in two ways: Pessimistically, one could conclude that theories from cognitive
science have little to contribute toward effective small-scale language modeling.
However, more optimistically, it’s worth noting that many of the submissions opted
to investigate what might be low-hanging fruit—aspects of pre-existing models that
are not optimized, or model architectures that differ minimally from pre-existing
ones. One reason for this might have been the relatively short timeline of the task,
just about 6 months from data release to when submissions were due. It is our
hope that subsequent challenges can attract submissions that take more risks by
modifying neural network architectures based on theories from linguistics and
cognitive science.

7. Experiments

Data Availability. Please see this repository, which contains code for training
LTG-BERT and ELC-BERT models on the BabyLM training corpora.
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In this section, we present experiments inspired by unanswered questions from
the BabyLM Challenge. In the first experiment, we investigate the role of training
time, measured in the number of epochs, on the performance of LTG-BERT. This
architecture was originally trained with a significantly larger-than-standard number
of epochs, which arguably makes it less cognitively plausible; is such a large
number of epochs necessary? In the second experiment, we directly compare
ELC-BERT, which was the official winner of the BabyLM challenge, against
LTG-BERT. We ask, are the skip connections between layers introduced by ELC-
BERT necessary for strong performance in small-data language modeling? We
find that LTG-BERT is about as good as ELC-BERT in our controlled setting, and
that, while a large number of epochs can increase model performance, returns are
strongly and quickly diminishing. We conclude that LTG-BERT is sufficient for
successful small-scale language modeling and that it can be well-trained in about
20 epochs.

7.1. Experiment 1: Evaluating the Role of the Number of Epochs in Training
The BabyLM challenge did not place any limits on the amount of computational

resources participants could use when training their models. Because our dataset
size was fixed for participants in the Strict and Strict-Small tracks, this meant that
computational resources fluctuated as a function of (i) model size and (ii) training
epochs, or the number of times the model sees its training data. Research in scaling
has determined that training data size and model size should scale proportionally
(Hoffmann et al., 2022); therefore, entrants tended not to train large models. When
entrants did use more computational resources, this tended to be allocated toward
an increased number of training epochs. When preparing baselines, we trained
models for 20 epochs, which we chose based on prior experience. We intended
this number—20 epochs—to also serve as a best first guess for our participants’
training budgets, especially for those who did not have extensive prior experience
training language models.

While most participants did indeed train in the general range of 20 epochs,
some chose to train for much longer. In particular, the creators of ELC-BERT
trained for 450 epochs in their Strict submission and 2,000 epochs in their Strict-
Small submission, which is well beyond typical for language modeling research.
Therefore, one big unanswered question at the end of the challenge was whether
these models had achieved top scores because of their architectural innovations, or
rather because they had trained for longer than other models.

To answer this question, we reproduced the LTG-BERT training pipeline using
publicly available code from the authors and analyzed how the performance of
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the model improved over the course of training. For the low end, we trained a
model on the Strict dataset for 20 epochs to match our baselines. At the other
extreme, we trained on the Strict-Small dataset for 800 epochs, to more closely
match the training epochs of the original LTG-BERT based models submitted to
the competition.11

For the training and BLiMP performance dynamics of our models, see Figure 7.
We find that both the Strict and Strict-Small model’s training loss decays roughly
exponentially during training, typical to the training dynamics of most language
models (Muennighoff et al., 2024). For both the Strict and Strict-Small models,
the increase in BLiMP performance also diminishes exponentially over time. This
trend also holds for the Strict model on GLUE (see Figure A.8), but not for the
Strict-Small model, where GLUE performance actually decreases slightly from 50
training epochs onwards.

Taking our results in conjunction with that of LTG-BERT and ELC-BERT
(Samuel et al., 2023; Charpentier and Samuel, 2023), we conclude that these
architectures are generally robust to overfitting on Strict and Strict-Small, allowing
them to be trained for large numbers of gradient updates and training epochs
on small corpora. Additionally, training for longer is beneficial for downstream
performance in most cases. We do not observe any unusual learning dynamics,
such as sudden drops in the training loss, nor instances in which test scores improve
dramatically late in training, a phenomenon observed in some small-scale synthetic
data experiments (Power et al., 2022; Murty et al., 2023). Importantly, in all our
experiments, both the training loss and BLiMP and GLUE performance change
gradually with more epochs, with gains diminishing as training continues. This
pattern of diminishing returns is in line with the previous literature on language
model training (Hoffmann et al., 2022; Muennighoff et al., 2024). Despite this
pattern, LTG-BERT does still perform better than our baseline models given the
same number of training epochs; this confirms that the architectural innovations of
LTG-BERT lead to improvements on our evaluation tasks.

We derive two conclusions from this experiment: First, LTG-BERT can be
trained to achieve good performance with less computational resources and a
smaller batch size than reported in the initial paper. Second, the returns of additional
training time quickly diminish. Specifically, we show that the 500 training epochs

11Although we used fewer training epochs, our batch size was also smaller than the one reported
in the original LTG-BERT paper due to computing constraints. Therefore, the number of gradient
updates, or times when the model updates its weights based on the observed training data, is actually
higher than that of LTG-BERT. See Appendix B for details.
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(a) Strict, 20 epochs

(b) Strict-Small, 800 epochs

Figure 7: Training curves and BLiMP evaluation scores for Strict and Strict-Small LTG-BERT. All
losses and scores are averaged over 3 random seeds. The Pearson correlations between training
loss and BLiMP performance are -0.99 and -0.95 for Strict and Strict-Small respectively, indicating
strong linear relationships. In other words, the training loss and BLiMP evaluations improve at
roughly the same rate.
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Model BLiMP GLUE MSGS BLiMP-Supp.
Llama 2 0.84 0.84 0.26 0.75
RoBERTa-Base 0.87 0.79 0.24 0.76

St
ric

t

ELC-BERT Charpentier and Samuel (2023) 0.85 0.78 0.47 0.77
LTG-BERT Samuel et al. (2023), 0.86 0.78 0.28 0.77
[R] ELC-BERT, 20 epochs 0.83 0.75 0.25 0.67
[R] LTG-BERT, 20 epochs 0.83 0.76 0.19 0.68
Best Baseline (OPT-125M) 0.75 0.70 0.13 0.68

S-
Sm

al
l LTG-BERT Samuel et al. (2023) 0.80 0.74 0.29 0.67

[R] LTG-BERT, 800 epochs 0.76 0.67 0.02 0.63
Best Baseline (OPT-125M) 0.63 0.62 0.10 0.53

Table 3: A comparison between our reproductions of LTG-BERT and ELC-BERT (labeled "[R]"),
our baselines, and existing results.

of the original paper are not necessary and that good results can be achieved with
about 20 epochs of training.

7.2. Experiment 2: Comparing LTG-BERT and ELC-BERT
Another unanswered question from the challenge relates to the relative im-

portance of the LTG-BERT baseline versus the skip connections introduced for
ELC-BERT (described in §6.5.2). To address this question, we train ELC-BERT for
20 epochs on the Strict dataset, and compare its performance to that of LTG-BERT.
Due to the significant cost of evaluating intermediate checkpoints, we only examine
the final trained model for ELC-BERT. The final results of this comparison, as well
as the final scores for our LTG-BERT models trained for the previous experiment,
can be seen in Table 3. We find that the performance of the two models is similar.
ELC-BERT achieves higher scores on MSGS, but LTG-BERT is better for GLUE
and the BLiMP supplement. We take these results to suggest that the LTG-BERT
architecture is what drives superior performance on BabyLM evaluations, as op-
posed to the skip connections that are added atop the LTG-BERT architecture to
create ELC-BERT.

8. General Discussion

Cognitive modeling with neural networks has played an important role in
psycholinguistics and in many areas of cognitive science. As neural network
approaches get more and more powerful, neural network modeling stands to
produce many more insights in the decades ahead. At the same time, it is important
to take stock and to ask how trends shaping the development of these models
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will impact their ability to help us answer scientific questions about the human
mind. This paper has attempted to do just that. We have argued that, while
beneficial for producing more powerful models, the current trend of scaling up has
a number of potential downsides for psycholinguistics research. We recommend
that linguists, cognitive scientists, and computer scientists work together to produce
shared resources that are more “human-scale,” including human-scale pretraining
datasets and models, as well as venues that support research dissemination in this
area. In addition to potential scientific impact of small-scale language modeling,
we believe that focusing on such models has the potential to lower the barrier of
entry for participation in language model pretraining research, allowing for a wider
and more diverse set of interested scientists to contribute.

We reported on two efforts undertaken by the authors to actualize these rec-
ommendations: the BabyLM Challenge and two experiments that followed up on
questions raised by the winning submissions. The most significant finding from
the challenge itself is that, even at smaller data scales, current neural network
architectures are very close to achieving human-level performance on many lin-
guistic tasks. The best performing models from the challenge showed sensitivity
to syntactic constraints that was on par with models several orders of magnitude
their size, and were just 3% shy of human-level performance on this task. This is a
significant achievement. Given the rate at which language modeling performance
has improved recently, it is likely that computational models—even ones trained
on human-scale datasets—will show sensitivities to syntactic constraints that are
on-par with humans. Furthermore, the number of participants who contributed
to the first iteration of this shared task demonstrates the broad interest in this
topic. Finally, the challenge produced several concrete outcomes, including (i) the
BabyLM Corpus, (ii) a series of small-scale models, and (iii) several lessons for
best practices in small-scale language modeling. These include the effectiveness
of the LTG-BERT and Contextualizer methods and the relative ineffectiveness of
curriculum learning.

While the efforts reported here present a step toward more plausible cognitive
models, there are still significant differences between today’s neural network
models and an ideal cognitive model that helps answer scientific questions about
linguistic cognition. We argue that, currently, the most significant of these has
to do with input modality. In this paper, we have generally equated human-scale
with small-scale; with respect to number of words, this is fair. However, many
people also receive vast amounts of non-linguistic visual input over the course of
development. It is an open question, however, just how much visual input is useful
or necessary for successful language learning. Visual information may be hard
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to align with words, and people who lack vision learn language without visual
input altogether. This said, creating more multi-modal text–image and text–video
datasets, and designing architectures that can effectively learn from these data, are
logical next steps in the creation of cognitively plausible computational models
that can help us answer questions about human language learning.
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Appendix A. Common Approaches

The BabyLM Challenge received over 30 submissions. To streamline discus-
sion, we taxonomize each submission according to the methods it employed.

Curriculum learning. This approach entails sorting the training data with respect
to some complexity metric(s). It was the most popular approach, with 13 teams
(41.9%) attempting some variant of curriculum learning. However, our meta-
analysis found curriculum learning to be not very effective, with the majority of
submissions that used it making only marginal gains over baseline models. That
being said, they did explore a large space of possible curricula, for example: rank-
ing sentences by average surprisal (Chobey et al., 2023; Hong et al., 2023), lexical
frequency (Borazjanizadeh, 2023; Martinez et al., 2023), length (DeBenedetto,
2023; Edman and Bylinina, 2023), and syntactic complexity (Mi, 2023; Oba et al.,
2023; Bunzeck and Zarrieß, 2023); sorting entire datasets by difficulty (Opper et al.,
2023; Martinez et al., 2023; Xiao et al., 2023); gradually increasing vocabulary
size (Thoma et al., 2023; Edman and Bylinina, 2023); and gradually increasing the
difficulty of the training objective (Martinez et al., 2023). We discuss curriculum
learning in greater detail in section 6.5.2.

Teacher–student or auxiliary model. In this setup an “teacher” model guides the
learning dynamics of a target model. According to our rules, this was permissible
as long as any auxiliary models were trained on the BabyLM corpus. Submissions
that used this approach included Samuel (2023) and Berend (2023), and Timiryasov
and Tastet (2023). Some of the notable submissions in this category used auxiliary
models to select appropriate training examples for a curriculum (Chobey et al.,
2023; Hong et al., 2023), or trained a reward model to use for reinforcement
learning (Zhao et al., 2023).

Data preprocessing. Many submissions modified the format of the pretraining
corpus. When controlled comparisons were performed, these preprocessing steps
often led to improvements. Submissions in this category included (Govindarajan
et al., 2023; Cheng et al., 2023; Edman and Bylinina, 2023). Among the more
unique approaches in this space was the model submitted in (Zhang et al., 2023)
(Baby’s CoThought), which used an LLM to reformat unrelated sentences from
the corpus into coherent paragraphs.

Hyperparameter tuning and model scaling. Many submissions performed exten-
sive hyperparameter searches, producing combinations of hyperparameters that
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work well on smaller datasets, leaving the underlying model architecture unchanged.
While extensive hyperparameter searching can be expensive and challenging when
scaling up to full-sized pretraining, in our limited data regime, such searches are
much more tractable. Some hyperparameter changes that were found to result
in improvements included reducing context length and training for more epochs
or long epochs with data augmentation (Jumelet et al., 2023; Bhardwaj et al.,
2023; Yang et al., 2023; Xiao et al., 2023; Samuel, 2023; Charpentier and Samuel,
2023). However, results are mixed when modifying model size: some participants
achieved better results when increasing model sizes (Çağatan, 2023), while others
were able to perform well when using very small models (Proskurina et al., 2023).

Multimodal learning. Multimodal learning was one of the directions where we
expected the most interest and the most submissions, however, we received few
submissions in this area, and the multimodal submissions did not reliably achieve
high overall accuracy. One submission used music (Govindarajan et al., 2023),
another used vision and language data (Amariucai and Warstadt, 2023), a third ex-
plored text-and-audio (Wolf et al., 2023), and a fourth incorporated text-and-image
data and lexical sensorimotor data as part of the embedding process using multiplex
networks (Stella et al., 2017; Ciaglia et al., 2023). Music training produced minor
improvements on some subtasks, while the vision-and-language system marginally
improved over the baselines in the Strict-Small track. The multiplex network did
not produce performance gains, though it did allow the participants to reduce the
number of parameters while preserving performance relative to the baselines.

Architecture modifications. Submissions in this category implemented founda-
tional changes to their underlying architecture that went above and beyond tuning
pre-existing hyperparameters. As we will discuss in section §6.5.2, some of the
most successful models involved this approach: Charpentier and Samuel (2023)
added additional connections between network layers, by adding a weighted sum
over the outputs of all previous layers. This architecture was based on a LTG-BERT
backbone. Momen et al. (2023) used the relatively novel StructFormer architecture
(Shen et al., 2021), which encourages tree-structured representations of inputs.
Overall, the success of these models validated the mission of the challenge—the
scaled-down data setting enabled participants to explore new and untested architec-
tural choices, which proved to be ultimately effective.

Training objectives. Some submissions trained language models using a mixture of
both a language modeling objective and some other objective. Martinez et al. (2023)
simplified the masked language modeling objective by coarse-graining the output
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classes, with little effect. Govindarajan et al. (2023) achieved improvements on spe-
cific BLiMP subtasks by modifying the masking procedure to preferentially mask
specific words thought to be relevant to a particular phenomenon tested by BLiMP.

Linguistic bias. Some submissions tried to impart human linguistic biases to
models. Such approaches include curriculum learning based on linguistically
motivated data sorting methods, as well as architectures that encourage hierarchical
analyses of inputs. Chen and Portelance (2023). Finally Thoma et al. (2023)
iteratively updated the vocabulary of the model based on word simplicity measures,
which were motivated by human age-of-acquisition analyses.

Data augmentation. Some approaches used models to produce novel data, which
were then incorporated in the training regime of a final model. One such model
included the Contextualizer (Xiao et al., 2023) (see §6.5.2). In addition, Jumelet
et al. (2023) used regular expressions to generate question-answer pairs given
the BabyLM training data, and Zhao et al. (2023) used an LLM to generate text
merging disparate sentences into cohesive paragraphs.
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(a) Strict, 20 epochs

(b) Strict-Small, 800 epochs

Figure A.8: Training curves and GLUE evaluation scores for Strict and Strict-Small LTG-BERT.
All losses and scores are averaged over 3 random seeds. GLUE “Evaluation Score” is an average
over all task-specific metrics (typically accuracy or F1-score). GLUE performance for Strict-Small
LTG-BERT declines after training for 50 epochs. The Pearson correlations between training loss
and GLUE performance are -0.97 and 0.61 for Strict and Strict-Small respectively.
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Appendix B. LTG-BERT reproduction details

We closely approximate the LTG-BERT results while training for 20 epochs
on Strict, as opposed to 500 (Charpentier and Samuel, 2023). Mechanistically
speaking, this finding says that LTG-BERT can be trained with a smaller batch
size on fairly reasonable compute. We list our hyperparameters, along with the
hyperparameters reported by the authors, below. Our ELC-BERT reproduction
uses the same hyperparameters as Strict [R]. All training runs were done on 4
NVIDIA RTX8000 GPUs.

Hyperparameter Strict Strict [R] Strict-Small Strict-Small [R]

Number of parameters 98M 98M 24M 24M
Number of layers 12 12 12 12
Hidden size 768 768 384 384
FF intermediate size 2 048 2 048 1 024 1 024
Vocabulary size 16 384 16 384 6 144 6 144
Attention heads 12 12 6 6
Hidden dropout 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1
Training steps 15 625 110 000 31 250 32 000
Batch size 32 768 256 8 096 2048
Initial Sequence length 128 128 128 128
Final Sequence length 512 128 512 128
Warmup ratio 1.6% 1.6% 1.6% 1.6%
Initial learning rate 0.01 3e-3 0.005 0.005
Final learning rate 0.001 0.00141 0.005 0.005
Learning rate scheduler cosine cosine cosine cosine
Weight decay 0.1 0.1 0.4 0.4
Layer norm ✏ 1e-7 1e-7 1e-7 1e-7
Optimizer LAMB LAMB LAMB LAMB
LAMB ✏ 1e-6 1e-6 1e-6 1e-6
LAMB �1 0.9 0.9 0.9 0.9
LAMB �2 0.98 0.98 0.98 0.98
Gradient clipping 2.0 2.0 2.0 2.0

Table B.4: Pretraining hyperparameters. Differences between our training runs (labeled "[R]") and
the original are bolded.
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