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CHAPTER 6

The Role of Indirect Evidence in Grammar Learning:

Investigations with Causal Manipulations of the

Learning Environment

Abstract

Progress in the study of human language acquisition has been limited by our ability

to conduct experiments to draw causal inferences about the effects of variables in

the input. This is due to the impracticality of manipulating the input to children

acquiring language, and the ethical implications of conducting any manipulation that

could impede L1 acquisition. This limitation has been especially obvious in the case

of Poverty of the Stimulus claims, such as those surrounding structure dependence

in subject auxiliary inversion. Decades of debates on this topic have fixated on the

untested assumption that direct evidence against a linear subject auxiliary inversion

172



rule is the most important factor in its acquisition. More recent work that recognizes

the potential importance of indirect evidence has failed to conduct experiments on

the full scale of human language acquisition.

In this study, we provide a proof-of-concept for a large-scale controlled abla-

tion study on the input to model learners,1 while also testing the sufficiency of indirect

evidence for acquiring a hierarchical bias. We adopt a top-down approach to con-

structing a fully controlled training environment. Starting with a naturalistic corpus,

we use a statistical parser to systematically filter out direct evidence for the hierarchi-

cal rule for subject auxiliary inversion. After training language models in both filtered

and unfiltered environments, we test them on a new hand-crafted set of test cases for

complex subject auxiliary inversion using an unsupervised forced-choice acceptabil-

ity judgment paradigm. Our experiments show that direct evidence—while often

helpful for acquiring hierarchical rules—is not always necessary, and set the ground-

work for subsequent experiments that take advantage of artificial neural networks to

address previously untestable hypotheses about human language learning.

6.1 Introduction

6.1.1 Indirect Evidence and the Poverty of the Stimulus

Poverty of the stimulus claims are claims that the input to typical children is in-

sufficient to explain learning of some target phenomenon without assuming some

substantive innate advantage. Many shortcomings of the input have been identified:

1Wei et al. (2021) anticipate this kind of design in a study that alters the frequency of specific verb
forms in language model pretraining data. However, the goal of their study is to control for a confound
affecting our ability to determine whether LMs apply grammatical rules systematically, not to test the
necessity of some environmental stimulus for grammar learning.
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small quantity, noise, lack of negative evidence. But the one we focus on in this

chapter is the lack of direct evidence against competing hypotheses. Native speakers

make consistent and predictable acceptability judgments for novel sentence types.

This must be the case since finite experience cannot give evidence for all of the infi-

nite combinatorial possibilities of syntax which we theoretically have command over.

Most often, poverty of the stimulus claims are invoked as a premise in service

of the conclusion that humans have substantive innate advantages. But in many cases

these claims have themselves become the conclusion: The end-goal of many acqui-

sition studies is to prove the insufficiency of the input. A common approach is to

conduct a corpus study in which researchers focus on a target phenomenon where the

input is thought to be underspecified, and count instances a particular form of input

that would disambiguate the correct human-like generalization from counterfactual

generalizations which are not observed. The argument goes that the poverty of the

stimulus claim is supported if this particular kind of input is absent, or too rare or

noisy to provide a usable learning signal.

A common rebuttal to such studies is that they do not rule out the existence

of all forms of disambiguating evidence. While direct counterexamples are probably

highly relevant for ruling out an incorrect generalization, there may be less explicit

sources of evidence in the input. This position, which we dub the Indirect Evidence

Hypothesis, holds that even the absence of direct evidence for a target generalization,

a learner can still rely on indirect evidence to consistently arrive at that generalization.

Just as the poverty of the stimulus is not a single claim, but a whole family of claims,

indirect evidence is a schema which can be applied to any number of learnability

targets.
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Move-Main or Move-First
Has the man who gone has seen the cat?Has the man who has gone seen the cat?

Has the man seen the cat who has gone?

Has the man has seen the cat who gone?

Has the man seen the cat who has gone?

Has the man has seen the cat who gone?

has the man who has gone has seen the cat?

Move-Main only Move-First only

Move-FirstMove-Main

Hypothesis Space ?

Figure 6.1: Illustration of the MOVE-MAIN and MOVE-FIRST hypotheses for subject
auxiliary inversion in English.

6.1.2 The Subject Auxiliary Inversion Puzzle

The rule for subject auxiliary inversion in English is the focus of one of the longest

debated poverty of the stimulus claims, summarized in Figure 6.1. Informally, En-

glish forms interrogatives (14b) from declaratives (14a) by moving an auxiliary verb

before the subject (in the case of wh-interrogatives (14c), a wh-word also moves

before the auxiliary). The tricky part is in deciding which auxiliary is fronted in sen-

tences containing more than one. The vast majority of interrogative clauses contain

only a single auxiliary verb, thereby providing no direct evidence about what to do

when presented with multiple auxiliaries. To make matters worse, when multiple
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auxiliaries are present, the one which is fronted is nearly always both the main aux-

iliary of the interrogative clause, and the first auxiliary. How then is the learner to

decide between two candidate rules: A structural rule (MOVE-MAIN), or a linear one

(MOVE-FIRST)?

(14) a. The string quartet was composed by Mozart.

b. Was the string quartet composed by Mozart?

c. Who was the string quartet composed by?

If we observed variation in adult grammars regarding these two rules, there

would be no puzzle. However, native English speakers universally prefer the MOVE-

MAIN hypothesis, as evidenced by the fact that they all accept (15b) and not (15c) as

the interrogative form of (15a).

(15) a. The string quartet he is rehearsing was composed by Mozart.

b. Was the string quartet he is rehearsing composed by Mozart?

c. *Is the string quartet he rehearsing was composed by Mozart?

To account for the consistency of this learning outcome two common hy-

potheses are commonly considered: The Direct Evidence Hypothesis holds that ex-

amples like (15b) are universally present in the input to children in sufficient quanti-

ties, while the Innateness Hypothesis holds that children universally possess an innate

bias that leads them to prefer structural rules over linear ones.

Given the significance of the conclusions hanging on this phenomenon, there

has been some back-and-forth about the plausibility Direct Evidence Hypothesis over

the years. In early writings on the topic, Chomsky (1965, 1971) mentions it only
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as a straw man hypothesis, dismissing it on speculation that examples like (15b)

are rare. Pullum and Scholz (2002) challenge this assumption. They conduct an

informal corpus search from which they claim (without providing their reasoning)

that approximately 1% of interrogatives in typical corpora constitute direct evidence

against the MOVE-FIRST rule (we more or less replicate this finding in Section 6.2.3).

In a response article, Legate and Yang (2002) push this estimate down to

0.07%. They further make an interesting argument about the precise quantity of direct

evidence required to learn the phenomenon. They argue that for a low-bias data-

driven learner, any two learning targets representing a binary decision (e.g. MOVE-

FIRST vs. MOVE-MAIN) will require roughly equal amounts of direct disambiguating

evidence. Therefore, if two targets have the same age-of-acquisition, they must have

the same frequency of direct evidence. They cite 3;2 as the age-of-acquisition for

MOVE-MAIN (Crain and Nakayama, 1987), which they note is roughly the same as

two other targets where the frequency of direct evidence is known to be 1.2%. On

this basis, they argue that the frequency of direct evidence for MOVE-MAIN is too

low for it to be learned without innate bias.

However, this argument overlooks the potentially significant role of indirect

evidence in the acquisition of MOVE-MAIN (Reali and Christiansen, 2005). This

mechanism for indirect evidence is explained by Perfors et al. (2011):

While a child may not receive direct evidence about the correctness of

a particular hierarchical phrase structure rule for analyzing some par-

ticular set of sentences such as the aux-fronting examples, there is vast

indirect evidence for the general superiority of syntax with that struc-

ture throughout language. A learner who adopts a hierarchical phrase
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structure framework for describing the syntax of English will arrive at

a much simpler, more explanatory account of her observations than a

learner who adopts a linear framework.

(Perfors et al., 2011: p. 310)

Thus, the Indirect Evidence Hypothesis depends in part on the presence of a

simplicity bias in human learning (Chater and Vitányi, 2003; Hsu et al., 2013). What

counts as indirect evidence on this view is potentially extremely broad. Any linguistic

generalization that is sensitive to hierarchical structures and not linear order provides

some degree of indirect evidence favoring MOVE-MAIN over MOVE-FIRST. This sug-

gests there is a cline of directness of evidence, ranging from non-interrogative uses of

subject-auxiliary inversion such as negative inversion, to structural transformations

on elements other than auxiliaries such as passivization, to other generalizations that

are sensitive to hierarchy rather than linear order such as subject-verb agreement.

Unfortunately, the Indirect Evidence Hypothesis is not testable using corpus

studies. As long as direct evidence is present in any quantity, there is no obvious way

to determine whether it does or does not play a necessary role in learning MOVE-

MAIN. And for obvious reasons, there is no way remove all direct evidence from the

input to children during language acquisition.

6.1.3 Artificial Learners and Subject Auxiliary Inversion

For these reasons, a number of researchers have turned to simulations with artificial

learners to try to sway the debate about subject auxiliary inversion. In one study,

Reali and Christiansen (2005) show that simple statistical learners including bigram

language models trained on child-directed speech assign higher likelihood to gram-
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matical MOVE-MAIN sentences (15b) than to ungrammatical MOVE-FIRST sentences

(15c). However, the fact that a bigram model can do so well suggests not that there

is evidence for MOVE-MAIN in co-occurrence data, but that the specific test cases

under investigation are too easy. Indeed, Kam et al. (2008) show that these models

fail to generalize when the test cases are modified minimally to exclude a specific

high-probability bigram appearing only in the grammatical sentence.

Subsequently, Perfors et al. (2011) found evidence that a Bayesian gram-

mar induction model prefers context-free grammars over non-hierarchical hypothe-

ses. While they were not specifically interested in subject auxiliary inversion, their

work articulated a version of the Indirect Evidence Hypothesis. However, their exper-

iments were limited due to the fact that their learner does not lack an innate structural

bias. In fact, it is explicitly presented with fully formulated context-free grammars

as part of finite hypothesis space. While the learner also considers other hypotheses

such as a set of regular grammars, it almost certainly puts greater prior probability

on hierarchical generalizations than a standard artificial neural network, constituting

a significant language-specific advantage.

More recently, McCoy et al. (2018, 2020) and Petty and Frank (2021) have all

approached this question by training modern sequence-to-sequence models to trans-

form declaratives to interrogatives, using a training set that supports both MOVE-

FIRST and MOVE-MAIN. These works find that neither RNNs nor Transformers

have a systematic hierarchical bias, though certain architectures adopt a generaliza-

tion consistent with MOVE-MAIN. However, these studies all probe models that are

trained end-to-end on highly simplified synthetic languages, meaning they cannot
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really exclude the possibility that more substantial exposure to natural language in-

duces a systematic bias towards MOVE-MAIN.

In fact, is exactly what Warstadt and Bowman (2020) and Mueller et al.

(2022) find. They take Transformer language models pretrained on large quanti-

ties of natural language text, and fine-tune them on ambiguous datasets supporting

both MOVE-MAIN and MOVE-FIRST. Both find that these models are overwhelmingly

successful at rejecting MOVE-FIRST for English subject auxiliary inversion, and their

outputs are consistent with the systematic application of MOVE-MAIN. However,

these studies still leave some questions. First, the models they evaluate are trained on

billions of words of input, and so they have an unfair advantage over human learn-

ers. Second, as shown by corpus studies by Pullum and Scholz (2002) and Legate

and Yang (2002), as well as later in this chapter, it is likely that these large language

models have been exposed to about a hundred thousand instances of direct evidence

against MOVE-FIRST which could sway their behavior on the downstream task.2

To convincingly address the learnability of MOVE-MAIN we need models like

those trained by McCoy et al. (2018, 2020) and Petty and Frank (2021) that have

never been exposed to direct evidence against MOVE-FIRST. However, even if indi-

rect evidence turned out to be sufficient to induce hierarchical generalization in the

absence of direct counterexamples to MOVE-FIRST, what counts as helpful evidence

could be difficult to hypothesize about, and may be highly distributed across natural

2Mueller et al. (2022) give a much lower estimate of less than 4 instances of direct evidence
against MOVE-FIRST per 100B tokens of English. We believe this is a significant underestimate due
to an excessively narrow definition of direct evidence. Their estimate reports only the frequency of
sequences of an interrogative followed immediately by the corresponding declarative, as in: Has the
man who has gone seen the cat? The man who has gone has seen the cat. Defining direct evidence
in this way is more defensible (though still arguably too narrow) for their task of generating the
interrogative given a declarative, but for our acceptability judgment task, a complex interrogative
alone is sufficient to rule out a competing surface generalization.
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language, making it impractical to try to build all the necessary indirect evidence into

a synthetic language bottom-up. Indeed, Mulligan et al. (2021) attempt this bottom-

up approach, training models in a multitask setting including unambiguous evidence

for some structural generalizations other than MOVE-MAIN. While this indirect evi-

dence sometimes reduced reliance on MOVE-FIRST, it was never sufficient to induce

systematic hierarchical generalization.

Given a lack of success on the bottom-up approach, it makes sense to attempt

a top-down approach to constructing a training set with only indirect evidence against

MOVE-FIRST. This means taking a naturalistic corpus which should already contain

all or most of the kinds of indirect evidence which could conceivably be relevant to

subject auxiliary inversion, and systematically ablating the direct evidence against

MOVE-FIRST. What follows is our attempt at doing just this.

6.2 Syntactic Filtering

To deliver on our top-down approach to constructing a pretraining dataset with only

indirect evidence, we implement a syntactic filter that uses a neural network-based

dependency parser to identify direct evidence for the subject auxiliary inversion rule

in naturally occurring text. The syntactic filter serves two purposes: First, it aids

in doing a corpus study—presented in the current section—on the kinds of direct

evidence in different domains of text. Second, it allows us to filter out direct evidence

from the input to model learners, which is the main manipulation in our subsequent

experiments. The goal of the filter is to catch any sentences that illustrate which verb

should be targeted by the subject auxiliary inversion transformation. Thus, the filter
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Figure 6.2: Logic for the syntactic filter.

should have high recall potentially at the cost of precision, which we confirm later in

this section.

6.2.1 Implementation of the Syntactic Filter

The logic for the filter is shown in more detail in Figure 6.2. Broadly speaking, the

filter should catch any sentences that both (a) include subject auxiliary inversion and

(b) contain multiple verbs that could be targeted by the transformation. For condition

(a), the filter detects subject auxiliary inversion if there is an auxiliary verb anywhere

in the sentence that precedes its subject.3 To increase recall, the filter also treats

any sentence that contains a question mark as having subject auxiliary inversion. For

condition (b), the filter first checks whether the sentence contains multiple auxiliaries.

3The dependency labeling schema makes the implementation a bit more complicated. Unlike in
generative syntax, the lexical verb, not the auxiliary verb, is labeled as the head. For this reason, if the
auxiliary is a dependent of a lexical verb, we check for any subject of the lexical verb whether or not
it precedes the auxiliary verb.
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If not, it checks whether there is a dependency arc anywhere in the sentence that

indicates the presence of an embedded clause.

The filter uses spaCy’s Transformer-based dependency parser,4 which is built

on top of RoBERTaBASE. The spaCy parser is trained on the Penn Treebank converted

to dependency graphs.5 It has near state-of-the-art performance on Penn Treebank,

achieving accuracy of 0.98 on part-of-speech tagging, 0.95 on unlabeled dependen-

cies, 0.94 on labeled dependencies, and 0.90 F1 on sentence segmentation.6

6.2.2 Evaluating the Syntactic Filter on Universal Dependencies

Since direct evidence is relatively rare in text (by any estimate), we use automated

methods to up-sample data which should be non-trivial for the filter. In this round

of validation, we compare our filter to a silver standard obtained by applying the

filter logic using human-annotated dependency parses from the English training set

of the Universal Dependencies treebank (Nivre et al., 2015). We then obtain gold

standard annotations by manually reviewing all examples where the filter and the

silver standard disagree on whether a sentence should be excluded, and a subset of

examples of where they agree. This allows us to better estimate the error rate of the

filter without having to manually review disproportionately many correct predictions.

For our gold standard annotations, we devise a more refined set of criteria

that an instance of complex subject auxiliary inversion must meet to count as direct

4https://github.com/explosion/spacy-models/releases/tag/en_core_web_trf-3.2.0
5https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md
6In a subset of experiments, we used a different parser from spaCy:

https://github.com/explosion/spacy-models/releases/tag/en_core_web_sm-2.3.0. These were ex-
periments conducted using OpenSubtitles data prior to the release of the Transformer-based parser.
The performance of the model is still strong: 0.92 accuracy on unlabeled dependencies and 0.90 on
labeled dependencies.
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evidence for MOVE-MAIN. Table 6.1 provides examples. To a first approximation,

we define direct evidence as all instances where subject auxiliary inversion occurs in

a sentence that contains multiple candidate verbs that could potentially be inverted.

A candidate verb is any auxiliary verb or a finite lexical verb. We make an exception

for cases where subject auxiliary inversion occurs within embedded position (such as

in a quotation or a tag question) and the distractor occurs outside of the embedded

constituent. We do not consider these cases of direct evidence since it is possible

to formulate both MOVE-MAIN and MOVE-FIRST in such a way that they apply only

within the embedded clause.

Based on these criteria, not all instances of direct evidence for MOVE-MAIN

are instances of direct evidence against MOVE-FIRST. There are many examples of

complex subject auxiliary inversion where the main verb is the first verb and the

distractor follows it. We adopt these more inclusive criteria since they also cover

direct counterexamples to other surface generalizations (e.g., MOVE-LAST) that could

not be ruled out by direct counterexamples to MOVE-FIRST alone.

The full confusion matrix for the filter, silver standard, and gold standard—

along with examples—is given in Table 6.1. From this, we can compute recall, preci-

sion, and overall accuracy (Table 6.2). First, we confirm that the filter has very high

recall: By our best estimate, it catches 99% of the direct evidence we identified by

manual annotation. Also, as expected, precision is quite a bit lower: Only 51% of the

sentences caught by the filter actually constituted direct evidence.

We can also estimate what proportion of misclassified sentences are due to

parsing errors as opposed to the filter logic. For direct evidence that gets past the

filter, this is difficult to estimate due to their sparsity (we only identified 3 such ex-
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Recall Precision Accuracy

Filter vs. Gold 99% 51% 98%
Filter vs. Silver 85% 90% 99%
Silver vs. Gold 99.5% 48% 98%

Table 6.2: Agreement metrics for the spaCy-based filter (“Filter”), the silver-standard
Universal Dependencies-based filter (“Silver”), and human annotations (“Gold”).

amples). However, for examples caught by the filter that did not constitute direct

evidence, we observe that the silver standard also filters 84%. Assuming there are

no parsing errors in the treebank, this implies that the large majority of misclassified

sentences are due to overly aggressive filter logic, rather than parser errors.

6.2.3 Corpus Study

We also use these annotations to make estimates about the prevalence of direct evi-

dence for the subject auxiliary inversion rule in written text. Based on our extrapo-

lations in Table 6.1, we estimate that approximately 218 sentences are instances of

complex subject auxiliary inversion, out of a total of 11,411. This means that about

2% of sentences contain both subject auxiliary inversion and multiple finite verbs

or auxiliaries. However, most of these examples lack a complex subject, meaning

they are still consistent with MOVE-FIRST. In fact, of the 32 sentences that were

manually marked as containing complex subject auxiliary inversion, only 2 of them

had a complex subject. While extrapolating from such a small sample comes with

great uncertainty, this puts our best estimate for the prevalence of evidence against

MOVE-FIRST (before filtering) at 0.1% of all sentences, which is within an order

of magnitude of estimates by both Pullum and Scholz (2002) and Legate and Yang

(2002).
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Even with this uncertainty, there is little doubt that direct evidence against

MOVE-MAIN is present in ordinary samples of written text. However, our goal was

never to test directly whether the actual quantity of direct evidence was sufficient

to reject MOVE-MAIN. Instead, we aim to reduce this quantity even further through

syntactic filtering. With the recall of the filter at 99%, this means we estimate the

prevalence of direct evidence after filtering to be 0.001%, or one in one hundred

thousand sentences. Such a large reduction in an already rare phenomenon should

substantially lower the chance that models’ predictions can be swayed by these ex-

amples. Put in another way, assuming the average sentence is 10 words in length

(this is probably an underestimate), our filtered models with 100M words of training

data (at the upper range of what a child is exposed to) will have been exposed to only

about 100 instances of direct evidence against MOVE-FIRST. As future work, one

could attempt to counteract the affect of such direct evidence against MOVE-FIRST

with corrupted examples providing evidence against MOVE-MAIN.

6.3 Language Model Training

We train all the language models for the main experiment from scratch as described

in this section.

6.3.1 Conditions Overview

A summary of all models and conditions is given below. For RoBERTa-style models,

there are 16 conditions total. For each condition, we evaluate three separate instances

of model trained in that condition with randomly sampled hyperparameters. This
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gives a population of 48 models. For 5-gram baselines, we only train one instance

per condition, and the only condition we vary is the size of the training data.

• RoBERTa-style models (3 instances / condition)

◦ Two treatments: FILTERED, CONTROL

◦ Two domains: WRITTEN, SPOKEN

◦ Four input volumes (# of words): 1M, 10M, 100M, 1B

• 5-gram baselines (1 instance / condition; CONTROL treatment, WRITTEN data

only)

◦ Four input volumes (# of words): 1M, 10M, 100M, 1B

6.3.2 Input Volumes

To investigate how learnability is affected by the scale of the input, we train language

models on different volumes of input data in four tiers: 1M words, 10M words,

100M words, and 1B words. The same tiers are used by Warstadt et al. (2020b) to

train the miniBERTas. To downsample, we first separate the pretraining corpora into

documents. Then we randomly select documents until the target number of words

is exceeded. Since the training corpora contain long documents such as novels and

movie scripts, the actual number of words varies from the target slightly.

188



6.3.3 Architecture and Training Details

6.3.3.1 RoBERTa

RoBERTa (Liu et al., 2019b) is one of the most widely used Transformer-based

masked language model architectures. It is based closely on the influential BERT

family of models (Devlin et al., 2019). The models are trained in fairseq7 with hyper-

parameters sampled following Warstadt et al. (2020b). For each of the 16 conditions,

we initially train five instances from scratch. Using development set perplexity, we

then select the three best instances from that condition to study in subsequent exper-

iments.

6.3.3.2 5-gram baseline

We train 5-gram language models using KenLM (Heafield, 2011). The model im-

plements modified Kneser-Ney smoothing with backoff (Heafield et al., 2013b). For

these baselines, we choose to train them only on data from the WRITTEN CONTROL

condition.

The purpose of this baseline is to place an upper bound on performance on

our evaluation data using only shallow co-occurrence features. An n-gram model

cannot make interesting abstractions like MOVE-MAIN or MOVE-FIRST, or generalize

meaningfully to cases where four more words intervene between the auxiliary and the

main verb. Thus, we can only attribute the use of such abstractions to our neural LMs

if their behavior differs systematically from this baseline.

7Link to our fork: https://github.com/YianZhang/fairseq
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Source Tokens Tokens Excluded Tokens Included % Excluded

Books 1.18B 58.6M 1.12B 5.0%
Wikipedia 1.45B 8.1M 1.44B 0.6%
Written training 0.97B 16.1M 0.95B 1.7%

Table 6.3: Quantity of data (measured by word tokens) filtered from the written train-
ing data. Books and Wikipedia refer to the entire preprocessed corpora, not just por-
tions sampled for training. Written training refers to just the data used for training,
which was sampled in a 3:1 ratio of Wikipedia to Books, following Devlin et al.
(2019).

6.3.4 Treatments: Filtered vs. Control

We obtain filtered data by first applying the syntactic filter described above to the

control data. We use the spaCy sentence segmenter to split the data into sentences,

and we retain the original order of sentences within a document post-filtering. Since

filtering lowers the number of words, we supplement the data post-filtering with data

from the same domains, to ensure that datasets from both treatments contain approx-

imately the same number of words. The supplemental data has also been filtered.

Statistics about filtered data are given in Table 6.3. We observe that a much

greater proportion of sentences from the Books domain are filtered compared to the

Wikipedia domain. This is likely due to the fact that interrogatives are most likely

to be present in dialogue, which is far more common in books than in encyclopedia

articles.

6.3.5 Domains: Written vs. Spoken

The training data for our models is from one of two domains: written English or

spoken English. Three-fourths of our written data is from English wikipedia, and the

remaining fourth is self-published books scraped from Smashwords. This combina-
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tion was shown to be effective in the training of BERT (Devlin et al., 2019) and the

miniBERTas (Warstadt et al., 2020b). However, from a cognitive modeling perspec-

tive, spoken data is preferable.8 Since we are not aware of any corpora of transcribed

speech on the scale of 100M or 1B of words, we use the English portion of the Open-

Subtitles corpus (Lison and Tiedemann, 2016), which consists of over 1B words of

scripted and unscripted subtitles from television and film.

6.4 Experiments: The Effect of Syntactic Filtering on

Unsupervised Acceptability Judgments

Our primary experiments use the targeted syntactic evaluation paradigm (Marvin and

Linzen, 2018; Warstadt et al., 2020a; Hu et al., 2020) to study which kinds of ac-

ceptability judgments are impacted by the application of the syntactic filter. Targeted

syntactic evaluation is a method for extracting acceptability judgments from language

models without task-specific supervision. Evaluation data consists of sentences in

minimal pairs of the form (Sgood, Sbad). The language model is used to estimate prob-

abilities for each sentence, and we consider its prediction correct if the following

inequality holds:

PLM(Sgood) > PLM(Sbad).

8One could take this argument quite far, and attempt to train models on transcripts of child directed
speech, transcriptions of environmental speech, or even audio recordings. Since large datasets from
these domains are limited, as discussed in greater detail in Chapter 1, we leave these possibilities to
future work.
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Figure 6.3: Performance of models from all conditions on BLiMP overall.

For masked language models like the RoBERTa-style models we evaluate, a

sentence can be scored using by sequentially masking one token at a time, following

the approximation used by Wang and Cho (2019) and Salazar et al. (2020):

PMLM(S) =

|S|∏
i=1

PMLM(ti|S[i\MASK]).

6.4.1 Evaluation on BLiMP

Prior to testing our models on subject auxiliary inversion, we test them on BLiMP

(Warstadt et al., 2020a) as a control. BLiMP contains 67 different minimal pair types

representing many phenomena in English morphosyntax, syntax, and semantics. The

idea behind this control is to test whether the syntactic filtering manipulation had

widespread effects on acceptability judgments in our models. We see no reasons a

priori why the removal of complex subject auxiliary inversion sentences should have
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 Marie fixed this blue dish.
*Marie fixed these blue dish.

 Subject-Verb Agreement

 Every cactus has fallen.
*Every cactus have fallen.
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 Who has Mark revealed he will see?
*Who has Mark revealed who will see?
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          waitresses clean.
*Brian sees what some waitresses clean
          that chair.

1E6 1E7 1E8 1E9
Pretraining volume (# of words)

 Argument Structure

 James questioned Lissa.
*A committee questioned Lissa.
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 Kevin's granddaughter healed one excited
          girl and Alicia healed some.
*Kevin's granddaughter healed one girl
          and Alicia healed some excited.

Figure 6.4: Performance of models from all conditions on BLiMP by category.

193



any impact on the ability of models to detect acceptability contrasts related to phe-

nomena in BLiMP like argument structure, determiner-noun agreement, or reflexive

binding. Still, there could be some reasons for doubt. First, the filter has low preci-

sion, and the needless removal of a large number of interrogatives is a confound that

might harm syntactic generalization. Second, the indirect evidence hypothesis itself

suggests that removing one kind of evidence from the input might have unexpected

consequences in other domains of grammar.9

Results on BLiMP show quite clearly that filtering indeed had little to no

effect on general acceptability judgments. Figure 6.3 shows overall BLiMP perfor-

mance. While we do observe that models trained in the written domain tend to do

better than models trained on spoken data, we see no effect of filtering on overall

performance. We also note, encouragingly, that n-gram performance is only slightly

above chance.

Looking at performance on individual phenomena in BLiMP (Figure 6.4) bol-

sters the evidence that filtering had little impact on general grammatical generaliza-

tion in the models. As before we see a consistent and expected difference between

the spoken and written domains, and between the neural LMs and the n-gram mod-

els. But we do not see any noteworthy difference due to filtering in any of the twelve

categories in BLiMP. Among the twelve categories, filler-gap dependencies and is-

land effects would have been the most likely to be affected. However, the general

reduction in frequency of interrogatives due to filtering does not seem to have made

these contrasts any more difficult to learn.
9On the whole though, this goes against the spirit of the indirect evidence hypothesis, which is

usually invoked to argue that learners are robust in the absence of evidence. It is reasonable to think
that systematically ablating certain kinds of evidence could have unintended harmful consequences,
but I hypothesize that such effects will be difficult to observe when the ablated evidence is a rare,
specific construction, as in the current experiment.
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Name Template/Example

MOVE-FIRST or
MOVE-MAIN A

⟨NP⟩ ⟨Aux⟩$ ⟨V/Pred⟩ ⟨NP⟩ ⟨Rel⟩ ⟨Aux⟩* ⟨VP/pred⟩
Ants are a curiosity to the children that are playing outside.

MOVE-FIRST or
MOVE-MAIN B

⟨pron_3sg⟩ has* ⟨V_t⟩ ⟨N⟩ ⟨N⟩ was$ ⟨V_t⟩ ⟨PP⟩
He has stolen the money his father was storing in the safe.

MOVE-FIRST or
MOVE-MAIN C

Every ⟨N_sg⟩ is* still ⟨V_t⟩ ⟨N⟩ ⟨Pro_3sg⟩ has$ been ⟨V_t⟩ since ⟨VP/N⟩
Every child is still eating the sandwich she has been nibbling on since 2pm.

MOVE-FIRST or
MOVE-MAIN D

⟨NP_pl⟩ ⟨Modal⟩$ ⟨V_bare⟩ ⟨NP_pl⟩ ⟨Rel⟩ (do)* ⟨V_pres⟩
The auditors will go after people who (do) cheat on their taxes.

Only MOVE-MAIN A ⟨NP⟩ ⟨Rel⟩ ⟨Aux⟩* ⟨VP/pred⟩ ⟨Aux⟩$ ⟨VP/pred⟩
Plants that couldn’t adapt to climate change have died out.

Only MOVE-MAIN B The ⟨Noun_sg⟩ ⟨pron_3sg⟩ is$ ⟨V_t⟩ was* ⟨VP/pred⟩.
The string quartet he is rehearsing was composed by Mozart.

Only MOVE-MAIN C Every ⟨noun_sg⟩ ⟨pron_3sg⟩ has$ ever ⟨V_t⟩ has* ⟨V_i⟩ ⟨adv⟩.
Every dog he has ever tried to pick up has barked loudly.

Only MOVE-MAIN D ⟨NP_pl⟩ ⟨Rel⟩ (do)* ⟨V_pres⟩ ⟨Modal⟩$ ⟨V_bare⟩
Heirloom apples that (do) receive special care will taste delicious in a pie.

Table 6.4: Templates for the subject auxiliary inversion evaluation data, with repre-
sentative examples.

6.4.2 Evaluation on Subject Auxiliary Inversion

Having established that syntactic filtering had no general effects of grammatical gen-

eralization, we now now investigate whether it had a localized effect on subject aux-

iliary inversion, and in particular the learning of MOVE-MAIN over MOVE-FIRST.

6.4.2.1 Evaluation Data

We generate evaluation data in minimal pairs from templates. There are 8 templates,

each specifying a fixed ordering of constituents which three of the authors semi-

manually populated with content. There are many tradeoffs to consider with such

data creation. We opt for a large quantity of high quality, semantically plausible

data, at the expense of diversity. Within each of the templates, we initially wrote
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20 completely different items. Then, to increase quantity and diversity, we added

variations to each of the 20 items. For instance, taking the Cartesian product of the

following set of variations, we can generate 36 unique minimal pairs. The templates

are described in greater detail in Table 6.4.

NP Aux V NP Rel Aux V P tomorrow’s election

this week’s debate

 will


attract

draw

bring in




young voters

participants

live broadcasters

 that had

 been politically aloof

shown little interest



6.4.2.2 The “Classic” Examples

The majority of the discussion about subject auxiliary inversion has focused on ex-

amples with a single subject relative clause. The following examples both fit this

description, but differ in the position of the relative clause with respect to the main

auxiliary, and thus the applicability of the MOVE-FIRST rule.

(16) a. Are centipedes and millipedes a curiosity to the students that are playing

outside?

b. *Are centipedes and millipedes are a curiosity to the students that playing

outside?

(17) a. Are the pushbuttons that are most frequently used on the control console

most vulnerable?

b. *Are the pushbuttons that most frequently used on the control console are

most vulnerable?
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 Move-First or Move-Main C

 Is every child still eating the pie she has been
          snacking on since 2 pm?
*Has every child is still eating the pie she been
          snacking on since 2 pm?
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Pretraining volume (# of words)

 Only Move-Main C
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 Has every book he has ever recommended sold poorly?
*Has every book he ever recommended has sold poorly?

Figure 6.5: Model performance on “classic” subject auxiliary inversion examples
with a single subject relative clause. The MOVE-MAIN and MOVE-FIRST rules give
the same predictions for the template on the left, and opposite predictions for the
template on the right.

Results for these templates are given in Figure 6.5. Performance is above

chance for all models, and above the n-gram baseline for all models with 10M words

or more of training data. Furthermore, performance is substantially above baseline

for models with 100M words or more. This rules out the possibility that any of

these models systematically acquire the MOVE-FIRST generalization. The results are

similar for models trained on filtered data, suggesting that even with little to no direct

evidence against MOVE-FIRST, none of our model learners preferentially accept that

hypothesis as the rule for subject auxiliary inversion.

This alone does not rule out that our models could sometime rely on the er-

roneous MOVE-FIRST rule as one of an ensemble of strategies. Indeed, comparing

the left and right sides of Figure 6.5, we see that similar models consistently perform

worse on the template that is inconsistent with MOVE-FIRST. By way of example,

this is what we would expect to see if the model relied MOVE-FIRST with some prob-

ability p < 0.5 and MOVE-MAIN or some other correlated heuristic with probability

1− p.
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6.4.2.3 The Local n-gram Confound

One possible heuristic is the presence of low probability bigrams common in the

ungrammatical sentences from these templates. Specifically, Kam et al. (2008) notice

that the bigram of a relativizer followed by a non-finite verb, for instance that playing

in (16b), is sufficient to deflate the likelihood of the ungrammatical sentence for a

model that lacks the representations to identify the main auxiliary.

This next set of results remove the spurious correlation between acceptability

and these low probability bigrams. The B and C templates from Table 6.4 use object

relatives without a relativizer to eliminate the spurious bigram correlation. The D

templates get around this by having a third person plural subject and a present tense

verb for the relative clause (e.g. the articles that offend people). This allows the

complex NP to have the same string in both the grammatical and ungrammatical

example.

As shown in Figure 6.6, performance is quite different depending on the po-

sition of the relative clause. On the left hand side, these examples are consistent with

both MOVE-MAIN and MOVE-FIRST. At 100M words or more, performance of all

models, regardless of filtering, is near perfect for the B and C templates, and high

(though close to the n-gram baseline) for the D template.

For the templates on the right hand side, MOVE-FIRST gives the incorrect

prediction. Notably, the models are quite often worse than the n-gram baseline. This

means that whatever features the neural LMs use to score sentences are less reli-

able than shallow co-occurrence features. Again, this finding is consistent with the

explanation that the neural models are using an ensemble of heuristics, of which

MOVE-FIRST is one. In fact, for the C and D templates, some neural models perform
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 Can't the friends that eat their lunches at this
          table go anywhere else?
*Do the friends that eat their lunches at this table
          can't go anywhere else?

Figure 6.6: Model performance on examples of complex subject auxiliary inversion
without the spurious bigram correlation identified by Kam et al. (2008).
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Figure 6.7: Model performance overall on all 8 subject auxiliary inversion test cases.

close to floor, consistent with MOVE-FIRST being the dominant determinant of the

model’s predictions (though only for this one template).

We also observe a somewhat inconsistent difference between the filtered and

control treatments for the ONLY MOVE-MAIN templates. The models trained in the

filtered environment often show a behavior consistent with applying the MOVE-FIRST

strategy more often—especially for those trained in the written domain.

6.4.2.4 The Effect of Filtering and Domain

From these results, there appears to be a generally negative affect of filtering on

models trained in the written domain, and little effect (if not a slightly positive one)

of filtering in the spoken domain. We confirm this impression by plotting overall

performance on the eight subject auxiliary inversion test cases in Figure 6.7.

We also observe that the performance of models trained in the written domain

increases dramatically between 10M and 100M words—a finding consistent with the
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Figure 6.8: Performance of 1B-word models with highest performance on BLiMP
from the given condition.

BLiMP learning curves reported in Chapter 5—while models trained in the spoken

domain show more gradual signs of improvement, and generally lie closer to the

n-gram baseline.

6.4.2.5 Best-Case Performance

The results above all focus on average-case performance over the three model in-

stances trained for each condition. However, results are qualitatively different when

we consider only best-case performance. In Figure 6.8 we select the best 1B word

model from each condition based on overall BLiMP performance.10 Again, there

is a tendency for performance to be lower on templates that are inconsistent with

MOVE-FIRST, suggesting this strategy might be applied in a subset of cases. But for

all templates, best-case performance for test cases consistent only with MOVE-MAIN

10We do model selection based on BLiMP to avoid biasing the results towards models that are good
at subject auxiliary inversion at the expense of other grammatical knowledge.
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is nearly always above chance, meaning MOVE-FIRST cannot be a dominant strategy

under any condition. Furthermore, for models trained in the written domain, perfor-

mance is usually near or above the n-gram baseline. Finally, there is no clear sign

that filtering had an effect on best-case performance at the 1B word scale. In most

cases, filtered and unfiltered models are comparable in performance, and in cases

where they differ, filtering does not always have a harmful effect.

6.5 Discussion

Our primary goal was to determine the role of indirect evidence in rejecting the

MOVE-FIRST rule for subject auxiliary inversion. On this question, our results are

somewhat nuanced. We found that in the best case, models could achieve similarly

strong performance on nearly all subject auxiliary inversion test cases whether or not

direct evidence against MOVE-FIRST was filtered out of their input. On top of this, we

did not observe any models clearly adopting MOVE-FIRST, even in the filtered con-

ditions. In the subset of test cases and data quantities where model predictions were

consistent with applying MOVE-FIRST as a dominant strategy, this was observed in

both the filtered and unfiltered conditions, and models in all conditions and test cases

rejected this hypothesis given sufficient pretraining data. These findings support the

Indirect Evidence Hypothesis that a learner without a prior hierarchical bias can rule

out linear generalizations simply through an abundance of indirect evidence that lan-

guage is hierarchical.

However, this conclusion comes with several caveats. First, we only obtain

a clearly positive result for the 1B word models. For models trained on less data,

performance falls at or below the n-gram baseline, making it conceivable that they
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actually rely mainly on simple co-occurrence heuristics rather than MOVE-MAIN.

The likelihood of this explanation goes down as we see success in a wider variety of

test cases, as different test cases share fewer coincidental surface cues.

Another caveat is that we found that the syntactic filtering manipulation did

have a consistent negative effect on subject auxiliary inversion predictions for models

trained in the written domain. No such effect was observed on BLiMP examples,

suggesting that the removal of direct evidence did in fact have a causal and targeted

effect on the subject auxiliary inversion. On the other hand, it is not clear that this

effect is disproportionately large for ONLY MOVE-MAIN test cases. Unless there is

such an interaction, it is more likely that the harm caused by filtering is due to the

removal of a large number interrogatives of all kinds (i.e. false positives caught by

the filter).

Yet another caveat is that we do observe that accuracy is generally lower for

ONLY MOVE-MAIN than for MOVE-FIRST OR MOVE-MAIN test cases. One explana-

tion for this finding is that all or most models are applying an ensemble of strategies,

of which MOVE-FIRST is one. Under this interpretation, while MOVE-FIRST is rarely

a dominant strategy, if there is any probability that this heuristic will be applied, it

should only reduce performance on the ONLY MOVE-MAIN test cases. An alternative

explanation is that it is the increased linear distance between the fronted auxiliary

and the main verb, rather than the presence of an invervening distractor auxiliary,

that results in lower performance on these cases. This hypothesis can be tested in

future work with additional test cases.11

11For example, in examples (ia) and (ib) below, the difference in condition is correlated with a
difference in the distance between the fronted auxiliary and the main verb. Examples such as (ic)
eliminate this confound: Despite the longer distance between the auxiliary and the main verb, this
example is still consistent with move-first because the added modifier on the subject does not contain
a finite distractor verb.
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A final caveat is that the success of the models trained on 1B words in the

filtered environment might be due to exposure to a greater amount of direct evidence

that was not captured by the filter. According to our earlier estimate, these models

could be exposed to approximately 1000 instances of direct evidence against MOVE-

FIRST. While these examples do not make up a greater proportion of the input at this

scale, there may be some absolute threshold over which the evidence is sufficient to

reject MOVE-FIRST, as suggested by Legate and Yang (2002). However, this expla-

nation predicts that the unfiltered models would reject MOVE-FIRST with just 1% of

the input given to the filtered models, since they have 100 times the quantity of direct

evidence. This is not what we observe. For example, in test template ONLY MOVE-

MAIN C in Figure 6.6, we observe some filtered models are clearly able to reject

MOVE-FIRST with 1B words of input. By the threshold argument, then, we should

expect some unfiltered models to reject MOVE-FIRST with just 10M words. Instead,

we find that the filtered and unfiltered models show similar predictions at this scale,

suggesting that the absolute quantity of direct evidence is not the main factor driving

these changes in performance, though it likely still plays some role. In future work,

we plan to counteract the affect of direct evidence against MOVE-FIRST that passes

through the filter by injecting comparable evidence in favor of MOVE-FIRST.

(i) a. Has the man who John is helping seen the cat? MOVE-FIRST only; distance=6
b. Has the man seen the cat who John is helping? MOVE-FIRST or MOVE-MAIN; distance=2
c. Has the man being helped by John seen the cat? MOVE-FIRST or MOVE-MAIN; distance=6
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6.6 Conclusion

Where does this leave us on the Poverty of the Stimulus and the innateness hypoth-

esis? We have not shown that humans learn MOVE-MAIN without the benefit of an

innate hierarchical bias. However, we have shown that MOVE-FIRST is not a particu-

larly attractive hypothesis for data-driven learners trained in a naturalistic setting. It

seems likely that the input actually does provide evidence that favors MOVE-MAIN,

even if it is difficult to pin the notion of evidence to a cohesive set of examples, and

even if the evidence is largely still consistent with MOVE-FIRST. In other words, the

stimulus may be richer than is often acknowledged. This is still consistent with direct

evidence being helpful. However, it highlights the importance of looking beyond di-

rect evidence in deciding whether the input is sufficient for learning a particular target

phenomenon.

While the results from this study are not totally conclusive, it makes a more

substantial contribution. It is a first step towards proving the viability of a new

methodology with the potential to give new decisive evidence on long-standing ques-

tions in the study of language acquisition. We have argued that debates in language

acquisition no longer need to rely on speculation about what constitutes sufficient

evidence for or against a hypothesis. As our experiments show, we have the tools

to conduct experiments on model learners trained on the quantity and variety of lin-

guistic input available to children, and to make targeted manipulations of their input

to draw causal inferences about the effects of variables in the input on grammatical

generalization.
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Nikola Ljubešić, Teresa Lynn, Christopher Manning, Cătălina Mărănduc, David
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