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Abstract

The Uniform Information Density (UID) hy-
pothesis posits that speakers tend to distribute
information evenly across linguistic units to
achieve efficient communication. Of course, in-
formation rate in texts and discourses is not
perfectly uniform. While these fluctuations
can be viewed as theoretically uninteresting
noise on top of a uniform target, another ex-
planation is that UID is not the only functional
pressure regulating information content in a
language. Speakers may also seek to main-
tain interest, adhere to writing conventions, and
build compelling arguments. In this paper, we
propose one such functional pressure; namely
that speakers modulate information rate based
on location within a hierarchically-structured
model of discourse. We term this the Structured
Context Hypothesis and test it by predicting the
surprisal contours of naturally occurring dis-
courses extracted from large language models
using predictors derived from discourse struc-
ture. We find that hierarchical predictors are
significant predictors of a discourse’s informa-
tion contour and that deeply nested hierarchi-
cal predictors are more predictive than shallow
ones. This work takes an initial step beyond
UID to propose testable hypotheses for why the
information rate fluctuates in predictable ways.

https://github.com/rycolab/
surprisal-discourse

1 Introduction

Linguistic communication takes place in a context,
a backdrop of both linguistic and non-linguistic
content that can determine how utterances’ form
(Fine et al., 2013) and meaning (Roberts, 2006)
are interpreted as well as what words speakers
choose to say next (Rohde and Kehler, 2014). We
investigate the role of context from an information-
theoretic perspective, asking how a linguistic
context, i.e., what has been said or written
previously, shapes the information content of each
linguistic unit, i.e., a novel word or utterance in
that context. One influential hypothesis for the
relationship between linguistic units and their con-
text is the Uniform Information Density (UID)

hypothesis (Fenk and Fenk, 1980; Genzel and
Charniak, 2002; Jaeger and Levy, 2006; Meister
et al., 2021; Clark et al., 2023), which posits that,
subject to the constraints of the grammar, speakers
spread out information as evenly as possible across
an utterance. If the UID hypothesis is taken to an
extreme, i.e., if it is imposed as a hard constraint,
then each linguistic unit would add roughly the
same amount of information, when the previous
context is taken into account.

There is an abundance of empirical support
for the UID hypothesis, albeit, in general, for
a soft variant of it where there is violable pres-
sure towards uniformity. For instance, Clark
et al. (2023) gives evidence across a number of
languages that word order is optimized for UID.
Empirically, however, within a discourse, the
information content of individual linguistic units
is never observed to be strictly static but rather to
fluctuate within a band. We dub this fluctuation
in the information content of a discourse its
information contour; see Fig. 1 for an example.
More theoretically, a pressure towards uniformity
must naturally be attenuated by other competing
functional pressures on linguistic communication.
Of course, the grammar constrains word choice,
which may make uniformity difficult to achieve
(Jaeger and Levy, 2006). Moreover, when an
author chooses the next word of a story or a poem,
UID might give way to discursive pressures such as
a desire for a clean narrative arc or a well-executed
rhetorical structure. Indeed, some literary devices,
such as rhyme and meter, may even ascribe higher
aesthetic value to a non-uniform information rate.

In this article, we propose an elaboration of the
UID hypothesis. In addition to a local pressure
for uniformity on information modulated by the
grammar, we posit that the information contour of
a discourse itself is a meaningful signal that reflects
a richer structured notion of context. The idea that
there is a relationship between local information
content and hierarchical syntax goes back to Hale
(2001) and has been expanded more recently (Jaffe
et al., 2020; Oh et al., 2022). However, decades of
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Figure 1: Information contour of the wsj_1111 document from the English RST Discourse Treebank.

previous research have also established that much
like sentences are comprised of syntactical con-
stituents, discourses are organized into nested units
as well (Mann and Thompson, 1988; Asher and
Lascarides, 2003; Prasad et al., 2008). Thus, we
hypothesize that, in addition to UID, there is a
functional pressure on information contours that
respects the hierarchical structure of discourse. We
term this the Structured Context Hypothesis. In
the context of this hypothesis, we put forth the
following research questions:

(i) Do structured representations of discourse
help explain information contours better than
non-structured ones?

(ii) And, if so, what type of structure is best at
predicting information rates?

To answer these questions, we use neural
language models to estimate the local information
content of written English and Spanish texts. We
then consider two different representations for
the hierarchical discourse structure of a text. The
first is the standard prose-writing convention of
dividing the document into (shallow) hierarchically
nested paragraphs and sentences. The second is
based on Rhetorical Structure Theory (RST;
Mann and Thompson, 1988), which breaks texts
into recursively nested spans that are linked by
discourse relations. To investigate questions (i) and
(ii) above, we apply Bayesian regression analysis
to determine whether access to the discourse
structure helps us better model information
contours. We do find evidence that hierarchical

discourse structure helps predict information
contours across the board and that RST is more
predictive than the shallowly nested paragraph and
sentence structures. In sum, this work provides
preliminary empirical evidence for the Structured
Context Hypothesis and paves the way for a theory
explaining how and why information contours may
be modulated by discourse structure.

2 Background

There are myriad information-theoretic theories
of language. This section builds up to and intro-
duces the Structured Context Hypothesis while
contextualizing it in light of previous proposals.

2.1 Language Models and Surprisal
A language model is a probability distribution over
Σ∗ for a given alphabet Σ. Every language model
can be decomposed as a product of conditional
next-unit probabilities given the units so far, giving
an autoregressive language model. Specifically,
for any string u = u1 · · ·uT ∈ Σ∗, we may write

p(u)
def
= p(EOS | u)

T∏
t=1

p(ut | u<t). (1)

Here, EOS /∈ Σ is a special end-of-string symbol.
From an autoregressive factorization of a lan-

guage model, we can define Shannon surprisal.
Given a language model p, the Shannon surprisal
(Shannon, 1948) of a unit in context is its negative
log probability in context, i.e.,

s(ut)
def
= − log p(ut | u<t), (2)



Shannon surprisal (or surprisal for short) is one
way to operationalize the notion of a unit’s infor-
mation content under the language model p, though
other operationalizations are possible (Giulianelli
et al., 2023, 2024a,b). Shannon surprisal as de-
fined above has been hypothesized to correlate with
the difficulty of a human reader or listener to pro-
cess an utterance, a notion known as surprisal the-
ory (Levy, 2008) which frames the theory of Hale
(2001) in an information-theoretic context. Specif-
ically, surprisal theory states that the surprisal of a
unit quantifies the cost of incrementally updating
expectations as a result of observing the unit (Levy,
2008). The crucial insight of surprisal theory is that
it proposes that, insofar as the language model used
to measure the probability of units is a good approx-
imation of the human language model, two distinct
properties—information content and processing
difficulty—can be quantified with a single metric.

2.2 Uniform Information Density

Linguistic communication can be idealized as the
transmission of a linguistic signal through a noisy
channel with limited capacity (Shannon, 1948, Part
2). Under this view, a speaker is encouraged to
choose a string of linguistic units that contains the
most information while not surpassing the chan-
nel’s capacity. This functional pressure is one moti-
vation of the UID hypothesis (Fenk and Fenk, 1980;
Jaeger and Levy, 2006). The reason for this even
distribution is as follows: On the one hand, if a
speaker’s linguistic signal contains more informa-
tion on average than the channel capacity, the com-
munication would be prone to transmission errors.
On the other, if the information content, on average,
were lower than the channel capacity, then there
could be an alternative, more efficient way of for-
mulating the linguistic signal. The optimal strategy
is thus to send information across the channel that is
as close to the channel capacity as possible without
being too difficult for the comprehender to process.

The UID hypothesis suggests that production
choices aim to optimize both the limitations
of channel capacity and the need to efficiently
convey information. This leads to surprisal being
distributed as evenly as possible across a speaker’s
utterance. By preventing significant fluctuations
in surprisal, speakers avoid surpassing or falling
below channel capacity, ensuring that processing
difficulty remains relatively stable for the listener.
The UID hypothesis is supported by empirical

studies of language production at the level of
syllables (Bell et al., 2003; Aylett and Turk, 2004,
2006), lexical items (Meister et al., 2021; Clark
et al., 2023), syntactic structures (Frank and Jaeger,
2008; Jaeger, 2010), and discourse connectives
(Torabi Asr and Demberg, 2012, 2015).

2.3 Contextualizing the UID Hypothesis
Most instantiations of the UID hypothesis use the
surprisal of a linguistic unit in context as an op-
erationalization of that unit’s information content.
Despite its empirical success at explaining vari-
ous linguistic phenomena, the UID hypothesis is
limited in several ways, which we detail below.

Empirical shortcomings of UID. Empirical es-
timates of character surprisal within words (Elman,
1990), estimates of word surprisal within sentences
(Levy, 2013; Futrell et al., 2020) and estimates of
sentence surprisal within discourse structures (Gen-
zel and Charniak, 2003) demonstrated that the rate
of surprisal fluctuates in ways that correspond to
linguistic structure. For instance, in the case of
character surprisal within words, peaks often cor-
respond to morpheme boundaries (Harris, 1955;
Elman, 1990; Pimentel et al., 2021) and the word
surprisal within utterances may correspond to con-
stituent boundaries (Jaeger and Levy, 2006). How-
ever, less work has studied peaks and troughs in
information content throughout an entire discourse.
We posit that the discourse-level fluctuations are
likewise not random and may be due to cognitive
and linguistic factors. If information contours fluc-
tuate in a predictable manner, e.g., if they exhibit
periodic structure, then this would be evidence
against a strong version of the UID hypothesis.

The Constancy Rate Principle. Genzel and
Charniak (2002) is one notable example of a
study that does investigate information contours
at the discourse level. The authors propose
the constancy rate principle, which stipulates
that the expected surprisal, i.e., the entropy of
the next unit distribution given all previously
uttered units, stays roughly constant throughout
a discourse. Specifically, they posit that while
the expected surprisal of the next unit given only
its current sentence, i.e., taken out of context,
increases throughout the discourse, the information
contained in the global context grows, too, so that
the expected surprisal given the full context stays
the same. As their tools at the time were limited
to n-gram language models and probabilistic



constituency parsers, Genzel and Charniak (2002)
could only empirically verify the former claim, i.e.,
that the surprisal given the local context increases.
More recent studies, however, have exploited
Transformer-based models to measure surprisal
in the global context. These studies do find weak
evidence of the constancy rate principle, especially
when considering languages other than English
(Verma et al., 2023) or other forms of commu-
nication, such as conversation (Giulianelli and
Fernández, 2021). However, even in cases where
some constancy is observed, it is always subject
to fluctuations within a band that are beyond the
explanatory power of the constancy rate principle.

Other related work. Besides uniformity pres-
sures, language production and comprehension are
also known to be modulated by discourse structure.
Previous work has investigated how fluctuations
of surprisal rates relate to paragraph boundaries
(Genzel and Charniak, 2003), topic shifts in
text (Qian and Jaeger, 2011) and open-domain
dialog (Xu and Reitter, 2016; Maës et al., 2022),
task-determined contextual units in goal-oriented
dialog (Giulianelli et al., 2021), as well as
extra-linguistic contextual cues (Doyle and Frank,
2015) in multi-party conversations.

Theoretical shortcomings of UID. A second,
more theoretical limitation of UID is that it does not
inherently take into account language-internal pres-
sures other than grammaticality. Certain linguistic
units, regardless of their information profile, might
be dispreferred within a linguistic context due to
discourse constraints, argumentative considera-
tions, or aesthetic preferences. One good example
of how language-internal pressures play out at
multiple levels of linguistic structure are contour
principles, constraints against identical segments
(or segments with identical features) occurring
consecutively which result in non-uniformity of
linguistic units. Although originally developed to
explain non-uniformity of phonological features
through the Obligatory Contour Principle (Leben,
1973), contour principles have been posited to
govern the information content of linguistic units
at various degrees of granularity, e.g., words within
higher levels organization including paragraphs
(Genzel and Charniak, 2003) and discourse topics
(Xu and Reitter, 2016). In addition, contour-like
principles are often recruited to explain, and teach,
good writing (Kharkwal and Muresan, 2014; Snow

et al., 2015; Archer and Jockers, 2016). At first
blush, it is not clear how to reconcile UID with
pressures deriving from such contour principles.

Underspecificity. The above discussion points
to a broader limitation of UID, namely, that it is
underspecified. While it postulates that informa-
tion be spread out as evenly as possible throughout
linguistic units, it does not provide a specific formu-
lation of uniformity: Which surprisal rates count
as uniform? And, should information be uniform
independently of other language-internal or struc-
tural pressures discussed above or only after con-
trolling for these? Finally, within which notion of
linguistic context should surprisal remain uniform?
Different formulations of uniformity have been ex-
plored for rates of word (Collins, 2014; Meister
et al., 2021) and utterance (Giulianelli and Fer-
nández, 2021) surprisal in discourse, with findings
hinting at a global uniformity of surprisal—i.e.,
surprisal tends to stay close to a discourse-level
average throughout—especially when larger com-
municative units are taken into account.

3 The Structured Context Hypothesis

To harmonize UID with the constraints imposed by
contour principles, we propose the Structured Con-
text Hypothesis. In most previous work, context
is modeled as an essentially sequential object—a
succession of paragraphs, topic episodes, dialogue
transactions, or dialogue rounds. In contrast, we
rely on a different view, considering context as hi-
erarchical representations made up of sentences
within paragraphs or deeply nested discourse trees.
We hypothesize that the fluctuations observed in
surprisal contours of discourse beyond a baseline
uniformity can be at least partially accounted for
by considering structured representations of the
discourse in question. This means that taking into
account hierarchical dependencies beyond the sen-
tence level in our theories should increase their abil-
ity to predict the information rate of discourse. We
express this view through the following hypothesis:

Hypothesis 1 The Structured Context Hypothesis:
The information contour of a discourse is (par-
tially) determined by the hierarchical structure of
its constituent discourse units.

The objective of our experiments is to empirically
test this hypothesis on English and Spanish texts.

In the remainder of this section, we outline two
manners to represent documents’ hierarchical dis-
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course structure: the conventional prose structure
of paragraphs and sentences, and the fine-grained
Rhetorical Structure Theory.

3.1 Conventional Prose Structure

The first hierarchical discourse structure we con-
sider is the conventional subdivision of documents
into paragraphs in which utterances correspond to
sentences and the basic linguistic units are individ-
ual words. In what follows, we refer to this way
of hierarchically structuring a text simply as prose
structure. Documents structured in this way can be
seen as shallow trees with a depth of at most three.

3.2 Rhetorical Structure Theory

Rhetorical Structure Theory (RST; Mann and
Thompson, 1988) is a well-known discourse
analysis framework that posits a high degree of
hierarchical structure in a discourse along with
categorizing the relationships between parts of
the discourse. The RST representation is a tree
structure (Fig. 2); the leaves of the tree correspond
to text fragments, usually clauses, which are
referred to as elementary discourse units (EDUs).
Internal nodes of the tree correspond to contiguous
spans of non-elementary discourse units called
complex discourse units (CDUs). While we are
primarily concerned with the tree’s hierarchical
structure, the tree also contains additional informa-
tion about the text, which may be valuable. A tree
node is labeled as a nucleus if it provides essential
information, and as a satellite if its meaning has
a more auxiliary function. Tree nodes are also
labeled by their rhetorical relations to one or
more contiguous discourse units, with labels such
as CONSEQUENCE or ELABORATION.

4 Methods

The goal of our statistical analyses is to study
whether the information contour of a text can be
predicted from discourse representations. Our mod-
els predict measures of information content (depen-
dent variables) based on a number of predictors (in-
dependent variables), some of which we designate
as baseline predictors while the others designate
as independent predictors for convenience. For
a summary of all variables, see Tab. 1 in App. B.

4.1 Dependent Variables

We express information contours in terms of four
types of dependent variables (see App. D for for-
mal definitions). The first dependent variable is the
global per-unit surprisal, i.e., the surprisal of a unit
conditioned on its entire preceding context, start-
ing from the beginning of the document. We also
refer to this as document surprisal. In addition to
global surprisal, our second dependent variable is
its rolling average of a window of 3, 5, and 7 units
(i.e., tokens). The third dependent variable type is
the difference between a unit’s global surprisal and
its surprisal in a local context. This is equivalent to
the pointwise mutual information (PMI) between
the unit and its preceding context conditioned on
the local context. Following previous work (Gen-
zel and Charniak, 2002; Giulianelli and Fernández,
2021, inter alia), we consider a local context to be
the context beginning with the current sentence or
current EDU, and the global context to be all ma-
terial in a document that precedes the current unit.
We also compute this PMI conditioned on no local
context, which is simply the difference of the global
surprisal and the unigram surprisal of the unit. We
include these measures to assess how much the
particular details of the larger discourse context
impact the information content of the current unit.

4.2 Baseline Predictors

Our baseline predictors include the length of the
current unit, measured in characters, and the sur-
prisal of the previous unit in all experiments. These
are quantities that we expect to be predictive of the
current unit’s surprisal, but that do not bear directly
on the structured context hypothesis.

4.3 Independent Predictors

Beyond the baseline predictors, our analyses are
based on two main sets of independent predictors:
those derived from prose structure trees and those
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derived from RST trees. Independent predictors for
both types of discourse trees are of four main types.

Relative position. These predictors encode the
distance of our most granular-level unit1 from
the beginning of a higher-level structural unit,
normalized by the higher-level unit’s length; for
example, the distance between a token and the start
of a paragraph in which it is located, normalized
by the number of tokens in the paragraph.

Nearest boundary. These predictors encode the
distance of a granular-level unit from the closest
boundary—left or right—of a higher-level struc-
tural unit, normalized by the higher-level unit’s
length. Nearest boundary predictors allow us to test
for non-monotonic relationships between surprisal
and a unit’s position in its parent and ancestor units.

Hierarchical position. These predictors encode
the relative position of a unit within its parent
in the hierarchical structure, such as the relative
position of the unit in a sentence, or of a paragraph
(that contains the unit) in the document. These pre-
dictors allow us to assess the level of a hierarchical
context structure that most affects surprisal values.

Transition predictors. These predictors encode
parsing information on RST and prose structure
trees. We define integer-valued predictors from
the discourse trees yielded by the RST and prose
structure annotations of our data. We do this
by traversing binarized versions of the various
trees using common parsing strategies (top-down,
bottom-up, and left-corner) for context-free gram-
mars and recording corresponding PUSH and POP

1At the most granular level, our units are tokens, obtained
by running the tokenizers of the language models we use to
estimate our ground truth surprisal values.

actions between the leaves of the trees; we illustrate
this in Fig. 3. For more details, see App. C.

4.4 Predictive Modeling Framework

To assess the predictive power of different dis-
course representations, we compare the goodness
of fit of a Bayesian linear regressor (Clyde et al.,
2022) that includes independent and baseline
predictors (the target model) to one that uses only
the baseline predictors (the baseline model) to
predict information contours. Dependent variables
and their predictors are described above in §§ 4.1
to 4.3; App. B provides a summary. For each set of
predictors, we perform 5-fold cross-validation, esti-
mating a posterior on four folds of the data at a time.
We fit the Bayesian linear regressor using the using
the Pyro framework (Bingham et al., 2019) with its
implementation of stochastic variational inference
(Hoffman et al., 2013). We use an AutoNormal
autoguide, the Adam optimizer (Kingma and Ba,
2015), a learning rate of 0.03, and the evidence
lower bound (Kingma and Welling, 2014) as our
objective. Then, we compute the expected mean-
squared error (MSE) under the Bayesian posterior
on the held-out fold. We aggregate the expected
MSEs across the held-out folds to approximate the
expected MSE across the entire dataset. The predic-
tive power of a set of predictors is calculated as the
difference in expected MSE between the baseline
model and the target model. We refer to this metric
as ∆MSE. To assess the statistical significance
of a predictor group’s ∆MSE, we run paired
permutation tests with the cross-validation results.

5 Data

We conduct experiments on the English RST Dis-
course Treebank (Carlson et al., 2001; Carlson and



Marcu, 2001) and the Spanish RST Discourse Tree-
bank (da Cunha et al., 2011). For the English Tree-
bank, we consider only the train set, containing
347 documents from the Wall Street Journal. The
Spanish Treebank contains 267 specialist-authored
documents in 9 domains, e.g., astrophysics, mathe-
matics, and law; we discard 11 documents due to
missing nodes in the RST trees.

Data preprocessing and RST annotations. We
preprocess the data following Braud et al. (2017),
e.g., we skip document titles which are not part of
the RST trees themselves. We also use their code2

to perform right-binarizarization of the RST trees,
but do not perform label harmonization (Braud
et al., 2017, §4.2) because we do not make use of
any rhetorical relation labels in our experiments.

Prose structure annotations. To recover prose
structure boundaries, i.e., paragraph and sentence
boundaries, we match English documents to the
corresponding plaintexts provided in the Penn Tree-
bank (Marcus et al., 1999). The Spanish Discourse
Treebank directly provides paragraph boundaries,
and we recover sentence structure with a text-to-
sentence splitter,3 with manual corrections where
necessary. We also perform right-binarization us-
ing the NLTK library (Bird et al., 2009) to make the
prose structure trees consistent with the RST trees.

Surprisal estimation. On the English RST Dis-
course Treebank, we compute the next-unit sur-
prisal with the NOUSRESEARCH/YARN-LLAMA-
2-7B-64K language model (Peng et al., 2024). We
selected NOUSRESEARCH/YARN-LLAMA-2-7B-
64K because it is trained with a long context win-
dow while still being lightweight enough to run on
our compute budget. We compute surprisals on the
Spanish RST Discourse Treebanks with the LINCE
Mistral 7B Instruct language model.4

6 Empirical Findings

We overview our empirical results in this section,
structuring our presentation in terms of five re-
search questions relating to the Structured Context
Hypothesis In Q1–4, we move from shallower to
deeper discourse structure representations, focus-
ing on RST-based predictors. In Q5, we compare
RST to conventional prose structure.

2https://bitbucket.org/chloebt/discourse
3https://github.com/mediacloud/sentence-splitter
4https://huggingface.co/NousResearch/Yarn-Llama-2-7b-

64k; https://huggingface.co/clibrain/lince-mistral-7b-it-es

Q1: Are information contours predictable from
the relative position within a discourse unit?
To answer this question, in Fig. 4 we visualize the
∆MSE (§4.4) of models trained on RST relative
position information. We find that including these
RST predictors into the model leads to lower
∆MSE on the held-out data compaared to the base-
line (p < 0.001) indicating that structured contexts
help to predict the information contours of a text.
Relative position is the best-performing RST-based
predictor group for English across dependent vari-
ables (Fig. 4a; p < 0.001 against all other predictor
groups) and second best for Spanish (Fig. 4b;
p < 0.001 against all but hierarchical position).

Q2: Is the effect of relative position within a
discourse unit non-monotonic? To account
for possible non-monotonicity, we trained models
on predictors including relative distance to
nearest boundaries within a discourse unit. These
predictors can account for increases in information
content close to the end of the unit after a decrease
in the middle of the unit or, vice versa, for lower
rates of information content closer to the unit’s
boundaries. However, the resulting ∆MSE for
both English and Spanish shows less improvement
over the baseline compared to the relative position
predictors (p < 0.001), indicating the effect of
a unit’s position within a discourse unit is better
modeled as monotonic.

Q3: Does relative position in higher-order struc-
tures predict information contours? To assess
the explanatory power of hierarchical discourse
structures for information contours, we use models
that include as predictors the relative position of
a unit within its parent in the hierarchical structure.
We find hierarchical position is a significant
predictor of all dependent variables analyzed,
and either the best or the second-best out of all
predictor groups tested. In the English data, it is
moderately less predictive than relative position
(p < 0.001; see Fig. 4a). In the Spanish data, it is
the strongest predictor of document surprisal and
its rolling average (p < 0.001) against all other
predictors), and on par with the relative position
(p > 0.001) for the PMI dependent variables.

Q4: Does hierarchical structure encoded by
discourse parsing transitions help predict
information contours? As an alternative way to
represent the hierarchical structure of the text, we
consider predictors obtained by deriving the RST

https://bitbucket.org/chloebt/discourse
https://github.com/mediacloud/sentence-splitter
https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k
https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k
https://huggingface.co/clibrain/lince-mistral-7b-it-es
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Figure 4: ∆MSE comparison of models trained on four RST-based predictor groups. Note that the scale for
surprisal with a rolling window of 5 is smaller, as rolling average dependent variables exhibit less variance. All
these results are statistically significant against the baseline (p < 0.001).

tree structure via constituency parsing algorithms
(App. C). Although the ∆MSE is negative in all
cases, indicating an increase in predictive power
over a baseline model, transition predictors are
significantly worse predictors of information
contours than relative and hierarchical position
(p < 0.001), for both English and Spanish.

Q5: What representation of discourse structure,
RST or Prose Structure, best explains infor-
mation contours? Fig. 5 presents a comparison
of all individual RST predictors analyzed so far
and their prose structure analogs in terms of their
∆MSE scores across dependent variables on the En-
glish data. We consider two models (referred to as
RST all and PS all in Fig. 5) that include all predic-
tors derived from either representation of discourse
structure. Results for the Spanish data are shown in
Fig. 6 (App. E). Our findings are consistent across
the two languages. For document surprisal and
surprisal with a rolling average of 5 units, RST pre-
dictors are better than PS predictors (p < 0.001).
We observe similar trends for PMI of document
and unit surprisal, and rolling averages of 3 and
7 (see Fig. 7 in App. E). Furthermore, when con-
sidering the locally conditioned PMI variables, we
find a correspondence between the strongest fam-
ily of predictors and the local context over which
the PMI is conditioned: The predictive power of
RST predictors is higher for EDU-conditioned PMI
(p < 0.001) while PS predictors are better for
sentence-conditioned PMI (p < 0.001).

Summary. Taken together, our results indicate
information contours extracted from language mod-
els do exhibit discourse-structural dependencies.
These dependencies are determined both by struc-
tural units of conventional prose writing and by
more hierarchical discourse units. However, ex-
planatory power is higher for the finer-grained and
higher-order structures determined by rhetorical
relations between discourse units.

7 Future Work

We hypothesized that violations of the communica-
tive pressure to communicate at a uniform rate
might be predictable, and that part of their pre-
dictability is linked to how production choices de-
pend on discourse structure (the Structured Con-
text Hypothesis). While we could not determine
violations of the UID hypothesis precisely due to
its inherent underspecificity, our predictive model-
ing framework captured deviations from a constant
information rate by design, with the intercept rep-
resenting the baseline rate and predictors capturing
deviations. As Fig. 1 shows, the structured con-
text helps predict oscillations around the base rate,
though we only account for a small portion of these
deviations. There are, however, additional intuitive
explanations for violations of uniformity which our
predictors do not capture, or only do so partially.

Maintaining interest. High surprisal content
may help to maintain a listener’s attention. In the
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Figure 5: ∆MSE across dependent variables of all RST and Prose Structure (PS) predictors on the English data.

domain of music synthesis, it has already been
proposed that modulating surprisal can affect lis-
tener engagement (Kothinti et al., 2020; Bjare et al.,
2024). Extending this idea to language, Venkatra-
man et al. (2023) found that when controlling for
total surprisal, non-uniformity of information den-
sity correlates with text quality.

Improving comprehension. Overly information-
dense content may hinder comprehension. In such
cases, low-surprisal content such as repetitions, re-
iterations, and summaries at strategic points in the
discourse structure can intuitively help to reinforce
new information and reduce confusion. Indeed, re-
dundancy is an important feature in error-correcting
codes (Hamming, 1950), and repetitions are impor-
tant for comprehension in noisy-channel situations
such as conversations between second-language
learners (Cervantes and Gainer, 1992).

Production constraints. Peaks and troughs need
not be only out of concern for a listener. Speakers
have limited effort to expend on formulating utter-
ances, and so they may use repetition to maintain
the flow of conversation (Giulianelli et al., 2022)
or hold the floor while formulating a new, more
informative utterance (Bergey and DeDeo, 2024).

Aesthetic conventions. General aesthetic
principles or specific stylistic conventions may
intentionally manipulate surprisal. Repetition
is common to many rhetorical devices (Harris,
2017), and poetic devices such as rhyme and meter
increase predictability. At the level of an entire
narrative, emotional arcs have been argued to be
conventionalized or to cluster into one of several
archetypes (Reagan et al., 2016; Brown and Tu,

2020), though this idea has not yet, as far as we
know, been extended to information content.

Each of these explanations draws on intuitions
that we believe to be widespread and compelling,
yet are out-of-scope for the UID hypothesis. More
importantly, they make empirical predictions that
can be tested by investigating surprisal contours in
texts and discourses from different genres that have
been annotated for features such as interest and
comprehensibility. Moving forward, it will become
necessary to look at the surprisal contour as just
one of many possible types of time-series data that
can be associated with a discourse, and which may
be related to each other in meaningful ways.

8 Conclusion

We conclude by briefly highlighting the theoretical
and empirical contributions of this paper. Theo-
retically, we have enumerated the limitations of
the UID hypothesis and have provided an initial
hypothesis, the Structured Context Hypothesis,
to predict how information fluctuates during a
discourse, namely discourse trees based on prose
conventions and RST. Empirically, we have found
support for this hypothesis by evaluating two
structured representations of discourse in English
and Spanish. We view this work as one step
in developing theories that can explain the vast
variation in discourses, texts, and writing genres
observed across human cultures.

Limitations

One major limitation of the present work is that
it is conducted only in English and Spanish. In



order to expand to a greater number of languages
we have already identified RST-annotated corpora
in Basque (Iruskieta et al., 2013, 2015), Brazilian
Portuguese (Maziero et al., 2015; Cardoso et al.,
2011; Collovini et al., 2007; Pardo and Seno,
2005; Pardo and Nunes, 2003, 2004), Dutch (Van
Der Vliet et al., 2011; Redeker et al., 2012) and
German (Stede, 2004; Stede and Neumann, 2014;
Bourgonje and Stede, 2020). These corpora should
additionally be tested as a possible next step. One
other limitation of this work is that we have only
used linear models. Although we do investigate
whether the relationship between discourse bound-
aries and surprisal is monotonic, it may be the case
that the relationship is non-linear. Finally, while
our theoretical discussion of (non-)uniformity
applies to linguistic units of any size, in practice
we only measure and predict the surprisal of tokens
under the language model (roughly words). Our
conclusions might change if the surprisals of char-
acters, phonemes, sentences, intonation phrases,
or any number of other units are considered.

Ethics Statement

We foresee no ethical problems with our work.
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A Reproducibility

We extracted the true surprisal values using an RTX
4090 GPU with VRAM 24GB and additional RAM
of 64GB for 6 hours. Our predictive modeling ex-
periments required a total of 70 hours on an RTX
3080 GPU with a 10 GB VRAM and 32GB RAM.
For details on autoguides, we refer to Pyro docu-
mentation5.

B Overview of Variables

Tab. 1 provides an overview of the independent and
dependent variables used in our experiments.

C Transition Predictors

RST transition predictors. To incorporate the
hierarchical structure information of the RST
annotations, we extract several integer variables
from the RST trees corresponding to their tree
structure. In line with related work (Daume III
and Marcu, 2002; Joty et al., 2012, inter alia), we
assume that RST annotations correspond to parse
trees of a context-free grammar (CFG). Most CFG
constituency parsers are of one of three variants
that determine in which order the nodes of the parse
tree are constructed: Top-down (TD), bottom-up
(BU), and left-corner (LC) (Rosenkrantz and Lewis,
1970; Johnson and Roark, 2000; Opedal et al.,
2023). As Gerdemann (1994) notes, each of the
three parsing variants follows a specific depth-first-
search tree traversal strategy. Specifically, TD, BU,
and LC correspond to pre-order, post-order, and in-
order traversal for a given parse tree, respectively.

We first preprocess the RST trees by right-
binarizing them. Then, for each of the parsing
strategies, we assign integer values to the leaves
of the RST trees using the following steps: 1) Tra-
verse the RST tree in depth-first order; 2) When
adding a CFG rule to the set of rules to be evaluated
later, we increment a PUSH counter; 3) When evalu-
ating a rule at a node, we increment a POP counter;
4) When reaching a leaf node, we assign that node
the value of the PUSH and POP counters. In other
words, each RST terminal node gets assigned a
tuple containing the number of PUSHes and POPs
that happened before evaluating the leaf node’s rule
under TD, BU, and LC parsing. Note that this is
related to how pushdown automata parse context-
free grammars (Hopcroft et al., 2001, Ch. 6). Since
in bottom-up parsing, not all POPs happen before

5https://docs.pyro.ai/en/dev/infer.autoguide.html

the last EDU of a document, we report the actions
twice for each EDU, recording both the previous
actions up to the given EDU and the next actions
which are the same values but shifted by one posi-
tion to the left. See Fig. 3 for an illustration.

Prose structure Transition predictors. We also
extract transition predictors from the prose struc-
ture of our data using the same method. The main
difference is that the structural units of prose struc-
ture are sentences and paragraphs rather than RST
EDUs. To perform constituency parsing on the
(flat) prose structure trees, we first right-binarize
them, as we did for the RST trees. The transition
predictors can then be extracted using the same
rules as described above since the parsing strate-
gies work for arbitrary binary trees.

D Dependent Variables

The goal of our analyses is to test whether the
information rate of text can be predicted from dis-
course trees. We express information rate in terms
of four types of dependent variables. We consider a
document to be made up of hierarchically arranged
units, where each higher-level unit contains the
units below it in the structure. We use the following
notation: u is a unit drawn from an alphabet Σ,
and u is a string of units, i.e., an element of Σ∗.
Note that we consider the alphabet Σ of units
to correspond to a specific level of the discourse
tree; e.g., characters, words, sentences, etc. When
looking at such a string of same-level units in a
hierarchical document, each individual unit can
be contextualized as a tuple (u, ℓ, g), where g is
the global context, i.e., all the units that linearly
preceded u in the document, and ℓ is the local
context, i.e., all the units that preceded u in the
document with the additional restriction that they
share the same parent in the hierarchical structure.
Note the global context subsumes the local context.
When we use prose structure to compute the depen-
dent variables, the units are tokens and the parent
units are sentences, meaning the global context g
of a token u contains all the tokens before u in the
document, while the local context ℓ contains all
the tokens from the start of the sentence. When
we use RST trees, the local context of a unit is all
the preceding units in the given EDU.

Global surprisal. This is the per-unit surprisal
conditioned on the entire preceding context, start-

https://docs.pyro.ai/en/dev/infer.autoguide.html


Variable Family Variable Type Description

Document surprisal Dependent Surprisal of unit u with global context g
Rolling average (n) Dependent Rolling average of document surprisal with a window

n ∈ {3, 5, 7}
PMI Dependent Pointwise mutual information of:

(i) u with global context g and u without context (unigram)
(ii) u with global context g and u with local context ℓ
(i.e., the containing sentence in prose structure, or the
containing EDU in RST)

Relative position Independent Relative position of unit u within higher-level unit
Boundary distance Independent Relative distance of u from the nearest boundary (start or

end) of higher level unit
Hierarchical position Independent Relative position of discourse unit v (where v is or con-

tains u) within higher-level unit w normalized by the total
number of discourse units nested directly under w

Parsing transitions Independent {previous, next} × {PUSHes, POPs} × {bottom-up, top-
down, left corner} number of transitions of either type
directly preceding or following u according to different
parsing strategies

Unit length Baseline length of u in terms of lower-level units
Previous unit surprisal Baseline Surprisal of unit preceding u

Table 1: Summary of all the variables (dependent variables, independent predictors, and baseline predictors) used
in our regression analysis. All variables are associated with a single unit u.

ing from the beginning of the document:

sg(u)
def
= − log p(u | g), (3)

where p is the probability produced by a language
model. We will also refer to global surprisal as
document surprisal in experiments. Eq. (3) is
identical to Eq. (2).

Rolling average of global surprisal. We com-
pute the rolling average of document information
contours over windows of size n ∈ {3, 5, 7}. Thus,
the highly local peaks and throughs of the original
information contour are smoothened out in the
resulting contours.

PMI: Unit and global context. We also measure
the difference between a unit’s unigram probability
and its global surprisal under our language model.
This difference is the pointwise mutual information
(PMI; Fano, 1961) between the unit and its global
context:

PMI(u; g) = log puni(u)− log p(u | g). (4)

where puni is u’s unigram probability (Opedal
et al., 2024, Eq. 10b). PMI is a common measure
in NLP (Church and Hanks, 1990) and measures

the degree of association, or mutual dependence,
between the two variables.

PMI: Unit and global context conditioned on
local context. We also measure the PMI between
a unit and its global context, when the local context
is taken into account:

PMI(u; g | ℓ)
= log p(u | ℓ)− log p(u | g, ℓ).

(5)

This is a measure of how much larger discourse
context impacts the information of the current
unit, even when local information is taken into
account. Specifically, we take units to be tokens
and compute two versions of this value, one where
the local context is the containing sentence and
one where it is the containing EDU.

E Further Experimental Results

In Fig. 6, we show the Spanish results correspond-
ing to the English ones in Fig. 5. We also provide
the results on the remaining dependent variables in
Fig. 7a for English and Fig. 7b for Spanish.
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Figure 6: ∆MSE of RST and Prose Structure (PS) across the same dependent variables as Fig. 5 on Spanish data.
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Figure 7: ∆MSE of RST and Prose Structure (PS) across the remaining dependent variables.


