
A Geometric Notion of Causal Probing
Clément Guerner Anej Svete Tianyu Liu Alexander Warstadt Ryan Cotterell
{cguerner, anej.svete, tianyu.liu, awarstadt, ryan.cotterell}@inf.ethz.ch

Abstract

The linear subspace hypothesis (Bolukbasi
et al., 2016) states that, in a language model’s
representation space, all information about a
concept such as verbal number is encoded in
a linear subspace. Prior work has relied on
auxiliary classification tasks to identify and
evaluate candidate subspaces that might give
support for this hypothesis. We instead give
a set of intrinsic criteria which characterize
an ideal linear concept subspace and enable
us to identify the subspace using only the lan-
guage model distribution. Our information-
theoretic framework accounts for spuriously
correlated features in the representation
space (Kumar et al., 2022a). As a byproduct
of this analysis, we hypothesize a causal pro-
cess for how a language model might lever-
age concepts during generation. Empirically,
we find that LEACE (Belrose et al., 2023)
returns a one-dimensional subspace contain-
ing roughly half of total concept information
under our framework for verbal-number. Our
causal intervention for controlled generation
shows that, for at least one concept, the sub-
space returned by LEACE can be used to
manipulate the concept value of the gener-
ated word with precision.

1 Introduction

The reliance of language models (LMs) on con-
cepts to make predictions—especially linguistic
concepts such as verbal-number1—is a well-
studied phenomenon (Ravfogel et al., 2021; Lasri
et al., 2022; Amini et al., 2023). Earlier studies on
this topic test whether an LM uses the concept of
verbal-number by giving it forced choice between
a grammatical and an ungrammatical variant of a
sentence (Linzen et al., 2016; Marvin and Linzen,
2018; Goldberg, 2019; Lasri et al., 2022). Consider,
for example, the sentences:

(1) a. The kids walk the dog.
the kid.PL walk.3PL.PRES the dog.SG

1Throughout the text, we will use a distinguished typeset-
ting to refer to concepts. For instance, the concept of a bird is
written as bird.

b. ∗The kids walks the dog.
the kid.PL walk.3SG.PRES the dog.SG

Goldberg (2019) shows that LMs can achieve near
perfect accuracy when forced to choose between
two such variants. Such results strongly suggest
that LMs make use of verbal-number and other
concepts to perform next-word prediction, but tell
us little about how the representation spaces of
these models encode such concepts.

Our primary contribution is to construct a novel
geometric notion of what it means for a neural
LM’s representation space2 to have information
about a concept. Following Bolukbasi et al. (2016)
and Ravfogel et al. (2022a), we argue that concepts
are naturally operationalized by linear subspaces.
Linear subspaces lend themselves to tractable
algorithms, and they have a simple geometric
interpretation which makes it possible to erase
a concept from a representation. Existing work
(Lasri et al., 2022; Ravfogel et al., 2023) has relied
on V-information (Xu et al., 2020) to quantify the
amount of information in the representation space
of a language model, before and after concept
erasure. This measure is extrinsic to the language
model, in the sense that it relies on a variational
family V of auxiliary classifiers to measure concept
information. In contrast, we propose an intrinsic,
information-theoretic (Shannon, 1948) definition
of information, by which we mean that information
is quantified using distributions induced from
the language model, i.e., without relying on an
additional classifier.

We show, via an example inspired by Kumar
et al. (2022a), that a naïve approach to measuring
intrinsic information in a subspace falls victim
to spurious correlations. Specifically, while a
ground truth, causal concept subspace may exist
in the representation space, correlated non-concept
features can also contain information about the
concept, complicating the task of estimating
concept information in either subspace. Our frame-

2For now, we define a representation space simply as the
d-dimensional vector space that a language model relies on to
encode text. We propose a more formal definition in §2.
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work breaks the dependence between the concept
subspace and its orthogonal complement, allowing
us to correctly compute information contained in
either subspace while marginalizing out the other.
This approach is counterfactual in the sense that
it creates representations that would not otherwise
occur under the language model. Crucially, it
allows us to talk about the mutual information
between linear subspaces and concepts.

We derive four geometric properties within our
counterfactual framework that characterize a pre-
cise geometric encoding of a concept. First, era-
sure is the condition that the orthogonal comple-
ment of the concept subspace should contain no
information about the concept. Second, encapsula-
tion states that projecting a representation onto our
concept subspace should preserve all the informa-
tion about the concept. Third, stability quantifies
the requirement that projection onto the orthogonal
complement of our concept subspace should pre-
serve non-concept information. Finally, contain-
ment ensures that the concept subspace does not
contain additional information beyond the concept.

Empirically, we study verbal-number in En-
glish and grammatical-gender in French. We
find, for verbal-number, that LEACE (Belrose
et al., 2023) yields a one-dimensional concept sub-
space which, according to our novel counterfac-
tual metrics, contains a large share of concept
information while leaving non-concept informa-
tion untouched. We then leverage our intrinsic
measure of information to posit a causal graph-
ical model by which a latent concept may gov-
ern LM text generation. This model enables us to
derive a causal controlled generation method by
manipulating the concept component of a repre-
sentation. And, indeed, we find evidence that it
is possible to use a one-dimensional subspace to
control the generation behavior of the language
model with respect to verbal-number, but not for
grammatical-gender.3

2 Concepts and Information

In this section, we build towards a definition of
mutual information between representations and
the concept of interest.

2.1 Language Modeling Basics

A language model is a probability distribution pLM
over Σ∗, the Kleene closure over an alphabet Σ.

3Code will be made available in camera ready version.

We parameterize pLM in an autoregressive manner
(Du et al., 2023) as follows:

pLM(x) = pLM(EOS | x)
T∏
t=1

pLM(xt | x<t) (1)

where xt ∈ Σ refers to tth word4 in a string x ∈ Σ∗,
where x<t represents the first (t− 1) words of x,
and EOS /∈ Σ being a distinguished end-of-string
symbol.

Many language models make use of contextual
representations, i.e., they encode a textual context
x<t as a real-valued column vector h(x<t) ∈ Rd.
Generally, h(x<t) is deterministically computed
from the context string x<t

5, such that the repre-
sentation space of Eq. (1) is defined as

H
def
=
{
h(x) | x ∈ Σ∗

}
⊂ Rd.6 (2)

2.2 Language Models and Concepts
We now discuss an exact sense in which a language
model can be said to encode a concept. First, we
define a concept based on the possible values it
can take. We formalize this with a concept set, a
finite, non-empty set C whose elements are those
values. For example, we take the concept set for
verbal-number to include three values: sg (e.g.,
walks), pl (e.g., walk), and n/a (e.g., consterna-
tion). For various reasons, including syncretism
(Baerman, 2007), some verbs in English can have
ambiguous concept value depending on context.
For example, the You in the sentence You walked to
the store can be sg or pl. We find similar facts for
other concepts in different languages. For instance,
for grammatical-gender in French, the adjective
marron can be both fem and msc.

To relate language models to concept sets, we
introduce a deterministic probability distribution
ι(c | x<t, x). ι tells us the probability that, in
the sequential context x<t ∈ Σ∗, word x ∈ Σ
is annotated with the concept value c ∈ C. For
now, we make the simplifying assumption that ι is

4We refer to x ∈ Σ as words for simplicity, even though
in the context of neural language modeling, these are often
called subwords, tokens, or symbols.

5We relax this assumption later on, such that h(x<t)
can be stochastic given x<t. One example of a language
model with stochastic contextual embeddings is Bowman
et al. (2016).

6Despite consisting of real vectors, the cardinality of H is
countably infinite, because it contains exactly one element for
every string in the countably infinte set Σ∗. Thus, summing
over H is discrete and does not require integration.



deterministic, i.e., we have ι(c | x<t, x) ∈ {0, 1}
for all c ∈ C, x ∈ Σ, and x<t ∈ Σ∗.7 We
later relax this assumption in §4 by proposing a
stochastic operationalization of concepts.

2.3 Unigram Information

To construct a mutual information between the
model’s notion of a concept and its contextual
representations, we require a joint distribution
between a concept-valued random variable and a
representation-valued random variable. In order
for this estimate to be intrinsic, we obtain this
distribution from the language model itself.

We begin in Eq. (3) by defining the joint in-
duced unigram distribution of the language model
over words and representations. In words, this dis-
tribution tells how frequently each word x ∈ Σ
co-occurs with a representation h ∈ H, on average,
in a string x ∼ pLM.

pu(x,h)
def
= (3)

∑
x∈Σ∗

pLM(x)

∑T
t=1 1

{
x = xt ∧ h = h(x<t)

}
T

Next, using ι, we can define a concept–
representation induced unigram distribution as

pu(c,h)
def
= (4)

∑
x∈Σ∗

pLM(x)

∑T
t=1 ι(c | x<t, xt)1

{
h = h(x<t)

}
T

The only difference, relative to Eq. (3), is that we
count instances of concept values mapped from
context strings and words via our distribution ι.

We can now use Eq. (4) to compute our intrinsic
measure of concept information in representations:

I(C;H) =
∑
c∈C

∑
h∈H

pu(c,h) log
pu(c,h)

pu(c)pu(h)
(5)

where C is a C-valued random variable and H is
a H-valued random variable. Eq. (5) tells us how
much information on average a representation h ∈
H tells us about the identity of a concept c ∈ C.

7To illustrate this formalism, consider the concept
verbal-number and sentences (1-a) and (1-b). The con-
cept set for verbal-number is C = {sg, pl, n/a}, and ι
maps as follows, e.g., ι(sg | The kids,walk) = 0, ι(pl |
The kids,walk) = 1.

Next, we define the following conditional mutual
information:

I(X;H | C) = (6)∑
c∈C

∑
x∈Σ

∑
h∈H

pu(x,h, c) log
pu(x,h | c)

pu(x | c)pu(h | c)

where pu(x,h, c) is trivially obtained by combin-
ing approaches used to derive Eq. (3) and Eq. (4).
This quantity measures, given a particular concept
value c ∈ C, how much additional information
about a word x ∈ Σ is encoded in the model’s
representations.

Our information-theoretic framework can
be generalized to handle different language-
generating processes, i.e., different decoding
algorithms for language models. Let p̃ be a
distribution over Σ∗, which we assume we can
easily draw samples from, e.g., a language model
decoded with nucleus sampling (Holtzman et al.,
2020). We obtain the joint induced unigram dis-
tribution p̃u(c,h) with respect to this distribution
by replacing pLM with p̃ in Eq. (4).

3 A Geometric Encoding of Concepts

The linear subspace hypothesis (Bolukbasi et al.,
2016) makes a prediction about how the concept in-
formation we quantify in the previous section is rep-
resented geometrically in the LM’s representation
space. Specifically, it postulates that there exists
a linear subspace SC ⊆ H that contains all of the
information about a concept with values C.This hy-
pothesis has been tested on various linguistic con-
cepts, including verbal-number (Ravfogel et al.,
2021; Lasri et al., 2022; Amini et al., 2023) and
grammatical-gender (Amini et al., 2023). We
follow in this vein, and decompose the represen-
tation space H into a concept linear subspace and
a non-concept, orthogonal subspace. We provide
four definitions, using our information-theoretic
framework, that characterize these subspaces in
terms of the information that they contain.

3.1 Concept Partition

Given a concept set C, we define a partition of a
language model’s representation space H into a
concept subspace SC and its orthogonal comple-
ment, the non-concept subspace S⊥C . We refer
to P ∈ Rd×d as the orthogonal projection matrix
that projects onto S⊥C , i.e., Ph = projS⊥C (h).
In turn, Id − P projects onto our concept



e(goes)

e(go)

e(walks)

e(walk)

number

lemma e(goes)

e(go)
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h(The kids) h(The kids)

Figure 1: Example of erasure of a verbal-number
subspace, when predicting the next word given The
kids. The representation space is two-dimensional with
the y-axis representing the correct subspace encoding
the concept verbal-number, while the x-axis encodes
the lemma. Word representations are denoted with v
and contextual representation with h. On the left, we
have the original representation space, and on the right,
we have the space resulting from erasing information
in our concept subspace, i.e., setting the y-coordinates
of all vectors in the space to 0.

walks walk goes go

sg 0 0 0.7 0
pl 0 0.3 0 0

Table 1: Hypothetical joint unigram distribution pu(x, c)
of verbal-number and word. The lemma walk is only
used as pl and go only as sg.

subspace SC with dimensionality |C| − 1, such that
(Id − P )h = projSC(h). The partition of H into
SC and S⊥C is an information partition.

We use Eq. (5) to define the information about
the concept encoded in both. Consider, for exam-
ple, information in S⊥C about C on average over
textual contexts

I(C;PH) = (7)∑
c∈C

∑
h∈H

pu(c,Ph) log
pu(c,Ph)

pu(c)pu(Ph)

where the language model’s representations are or-
thogonally projected onto S⊥C using P . Eq. (7)
relates the geometric notion of a linear subspace
with the information-theoretic notion of informa-
tion. Thus, if I(C;PH) is low, we can say that
P erases a lot of concept information in H by pro-
jecting onto the subspace S⊥C . We refer to H∥

def
=

{(Id − P )h | h ∈ H},H⊥
def
= {Ph | h ∈ H}

as random variables corresponding to contextual
representations projected onto concept and non-
concept subspaces, respectively.

3.2 The Perils of Correlation

Eq. (7) suggests an attractive property we might
ask from P : It should satisfy I (C;PH) = 0, i.e.,
completely erase the information about the concept
by projecting onto S⊥C . However, as we show next,
this naïve characterization is flawed. We illustrate
this point with a counterexample inspired by Ku-
mar et al. (2022a), as shown in Fig. 1. Intuitively,
such a transformation constitutes successful era-
sure.8 To the extent that such a subspace exists
in reality, finding the P that erases this subspace
seems like the correct objective.

Now, consider the hypothetical joint word–
concept unigram distribution pu(x, c) in Table 1.
Under this distribution, a projection matrix P that
erases the correct y-axis as shown in Fig. 1 is not
the minimizer of Eq. (7). Knowledge of the lemma
alone reveals the verbal-number, because H⊥
(x-axis) and H∥ (y-axis) are heavily correlated.
This means that I(C;H⊥) = 0.88 > 0 in our toy
example in Fig. 1. In order to have I(C;H⊥) = 0,
we would need to let P = 0, thereby erasing all
lemma information as well. Thus, requiring P
to satisfy I(C;H⊥) = 0 does not characterize
successful erasure because it requires removing all
spuriously correlated features.

3.3 A Counterfactual Unigram Distribution

The underlying problem with the example given
in §3.2 is that H∥ and H⊥ have a common
cause that introduces a spurious correlation—the
Σ∗-valued context random variable X<t. This
means I(H⊥;H∥) > 0, i.e., these variables are
not statistically independent. We resolve this
issue by building a variant of our information-
theoretic objective in Eq. (7) that assumes these
two variables are statistically independent, i.e.,
I(H⊥;H∥) = 0. Under this assumption, H⊥
would contain no information about the concept,
and identification of H∥ would be possible via
mutual information. While this assumption likely
never holds for a concept in practice, this does not
matter here—we are crafting a metric under which
the correct subspace will be optimal.

We denote with h∥
def
= (Id−P )h and h⊥

def
= Ph

the projections onto the concept and non-concept
subspace for h ∈ H. Marginalizing with respect to

8One might refer to the y-axis as the causal subspace,
in the sense that manipulating the values of that subspace
would result in changing precisely the concept encoded by the
representation while leaving other aspects intact.



the induced unigram distribution defined in §2, we
arrive at the following unigram distributions:

pu(h⊥)
def
=
∑
h∈H

1{h⊥ = Ph}pu(h) (8)

pu(h∥)
def
=
∑
h∈H

1{h∥ = (Id − P )h}pu(h) (9)

We now construct a variant of our in-
duced unigram pu(x, c,h) that assumes
independence between h⊥ and h∥, i.e.,

qu(h) = qu(h⊥,h∥)
def
= pu(h⊥) pu(h∥). This

counterfactual unigram distribution qu assigns
probability mass to (h⊥,h∥) pairs which, under
pu(h), would have zero probability.

qu(x,c,h∥,h⊥)
def
=

∑
x<t∈Σ∗

ι(c | x,x<t) (10)

pLM(x | h∥,h⊥) p(x<t) pu(h∥) pu(h⊥)

The choice of the name counterfactual, as well
as the implications of this decoupling, will be
made precise in §4 when we introduce the causal
interpretation of the word–concept model.

We define the counterfactual mutual informa-
tion between the concept and the projection onto
the non-concept subspace as

Iq(C;H⊥)
def
= (11)∑

c∈C

∑
h⊥∈H⊥

qu(c,h⊥) log
qu(c,h⊥)

qu(c)qu(h⊥)

Importantly, Eq. (11) is minimized by the correct
subspace in our example in §3.2. Note that
Iq(C;H∥) can also be obtained by marginalizing
out h⊥ instead. Finally, we define Iq(X;H⊥ | C)
by using qu instead of pu in Eq. (6).

3.4 Erasure and Encapsulation
We now give formal definitions of erasure and en-
capsulation based on Eq. (11). These two notions,
combined, determine the extent to which a projec-
tion matrix P has decomposed the representation
space into concept and non-concept subspaces.

Definition 3.1 (Counterfactual Erasure). Let
H⊥

def
= PH be an Rd-valued random variable.

An orthogonal projection matrix P ∈ Rd×d is an
ε-eraser of C if Iq(C;H⊥) < ε.

As ε → 0, the subspace S⊥C characterized by
an ε-eraser P for concept set C with respect to H
encodes very little information about the concept.

This means that the language model is no longer
able to determine the concept value required by
the textual context when generating the next word.
We now show that given an ε-eraser P , projecting
onto its orthogonal complement with Id − P
preserves nearly all of the information.
Definition 3.2 (Counterfactual Encapsulation).
Let H∥

def
= (Id − P )H be an Rd-valued random

variable. An orthogonal projection matrix
Id − P ∈ Rd×d is an ε-encapsulator of C if
Iq(C;H)− Iq(C;H∥) < ε.

The quantity Iq(C;H) − Iq(C;H∥) is always
non-negative due to the data-processing inequality
(Cover and Thomas, 2006, §2.8). Encapsulation
operationalizes the idea that a subspace gives us
all the information needed to correctly identify the
concept value required by textual context. Com-
bining erasure and encapsulation, we show that the
mutual information decomposes additively in the
following sense.
Proposition 3.3. Suppose P is a ε-eraser and
(Id − P ) is a ε-encapsulator of C with respect
to H. Then, as ε → 0, the following holds

Iq(C;H) = Iq(C;H⊥) + Iq(C;H∥) (12)

Proof. See App. A. ■

3.5 Containment and Stability
Erasure and encapsulation do not consider the in-
formation content of the representation aside from
the concept. With perfect erasure and encapsula-
tion, the learned orthogonal projection matrix P
could erase much of the non-concept related in-
formation from S⊥C . Specifically, if C is encoded
non-linearly (Ravfogel et al., 2022b), then erasure
via a linear orthogonal projection could require the
removal of additional dimensions that also contain
non-concept information. Therefore, in the concept
erasure literature, tests of successful erasure are
paired with a verification that the representations
are not otherwise damaged (Kumar et al., 2022a;
Ravfogel et al., 2020, 2022a,b; Elazar et al., 2021).
We, too, need an information-theoretic notion of
preservation of non-concept information in H⊥.

Preserving information about non-concept
aspects of x<t in H⊥ requires that H∥ only
capture information about the concept, i.e. that
it should be the minimal subspace that captures
C. Containment formalizes this notion by
requiring that, conditioned on C, H∥ contains
little information about the next word X .
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Figure 2: Causal graphical models that demonstrate how a concept may have a causal effect on word generation.
Circles represent random variables and diamonds represent deterministic variables. X<t, C,X represent the
random variables for the textual context, the underlying concept, and the next word, respectively. H,H∥,H⊥ are
the representation at step t, its concept-related component, and its component whose concept-related information
is erased by orthogonal projection matrix P . Fig. 2a shows the traditional autoregressive causal structure for
generation. Fig. 2b is our proposed causal structure for generation with a C-valued latent variable C. Fig. 2c is the
causal structure induced by a do-intervention on C. Finally, Fig. 2d is the causal structure implied by Yang and
Klein’s (2021) concept-controlled generation approach.

Definition 3.4 (Counterfactual Containment). Let
P be an eraser for concept set C with respect to H.
Let H∥

def
= (Id − P )H be an Rd-valued random

variable. Then, we say that P is ε-contained with
respect to H and C if Iq(X;H∥ | C) < ε.

Lastly, we define stability to measure how much
non-concept information about the next word
is preserved in the non-concept subspace H⊥.
Ideally, this should be as close as possible to the
information present in the entire representation
space, ignoring the information about the concept.

Definition 3.5 (Counterfactual Stability). Let P
be an eraser for concept set C with respect to H.
Let H⊥

def
= PH be an Rd-valued random variable.

Then, we say that P is an ε-stabilizer with respect
to H and C if Iq(X;H | C)− Iq(X;H⊥ | C) < ε.

The data processing inequality once again
ensures that Iq(X;H | C)− Iq(X;H⊥ | C) ≥ 0.
Containment and stability together characterize the
preservation of information not related to concepts.

4 A Causal Graphical Model

We now propose a causal structure by which lan-
guage models leverage concepts, in the form of a
latent variable, in the generation process. We relate
this causal structure to the information partition def-
initions given in §3. This enables causal controlled
generation via a do-intervention (Pearl, 2009) on
the concept random variable C. We finish with a
discussion of how our causal controlled generation
approach improves upon existing approaches.

4.1 Concept as a Latent Variable

We illustrate the tradidional autoregressive causal
structure, based on the model definition put forth
in §2.1, in Fig. 2a. In it, the Σ∗-valued random
variable X<t represents the textual context that
was previously sampled from the model, H is the
deterministic contextual representation, and X the
word which is sampled using H .

To enable controlled generation with respect to
the concept, we introduce a C-valued latent variable
C in the generation process, as shown in Fig. 2b.
We make two assumptions about C. First, we as-
sume that the distribution of C is influenced by
the textual context X<t, and, moreover, that C is
not fully determined by the context x<t, i.e., C is
stochastic. This assumption is justified by the fact
that the concept value of the next word may not be
fully determined by the preceding context, as dis-
cussed in §2. Second, we assume that the concept
is determined before the word is sampled. This
enables controlled generation, as the concept can
directly influence the sampled word x. In doing
so, we break away from ι, which deterministically
assigned a concept value to a word based on the
preceding context.

Our two assumptions on C have an important
implication: X<t is no longer the only source of
stochasticity in H , as in Fig. 2a. Rather, we as-
sume that both X<t as well as C influence the
representation H , i.e., h = h (x<t, c). Although
this construction is not the norm in neural language
models, it is a minor departure from reality that



greatly enables our model.

4.2 Causal Controlled Generation

We now derive a formal relationship between era-
sure, encapsulation, stability, containment, and the
assumed causal graph in Fig. 2b. First, inspecting
Fig. 2b, we see that if we wish to intervene on C to
influence X , there is a single backdoor path from
C to H . As shown in Fig. 2c, intervening on C
directly (denoted by do(C = c)) removes the edge
X<t → C, which lets us easily compute the dis-
tribution over the next word after intervention as
follows

p(x | H⊥ = h⊥, do(C = c)) (13)

=
∑
g∈H

p(x | H = h⊥ + (Id − P )g) p(g | c)

where, as shown in Fig. 2b, we assume that h⊥
is deterministic given the context x<t. g is an
Rd-valued contextual representation that encodes
a textual context x′

<t with concept value c. With
high probability, h(x<t) and g(x′

<t) will be differ-
ent. This is the logical conclusion of our decision
to treat h⊥ and h∥ as statistically independent—we
can intervene on the generation process by setting
the value of the concept component independently.

We now make good on our decision to name the
counterfactual unigram distribution from Eq. (10)
as such. Assuming the model Fig. 2b, a do-
intervention on C—as depicted in Fig. 2c—implies
erasure, encapsulation, stability, and containment.
We make this idea formal in the following theorem.

Theorem 4.1. Consider a joint distribution p that
factors as in Fig. 2b parameterized by orthogonal
projection matrix P . Under the distribution

pdo(x,h⊥,h∥, c) = p(x | h⊥,h∥) (14)

p(h⊥ | do (C = c)) p(h∥ | do (C = c)) p(c)

we have that P is an ε-eraser, Id − P is an
ε-encapsulator, Id − P is an ε-container and P
is an ε-stabilizer for every ε > 0.

Proof. See App. B. ■

What Theorem 4.1 tells us is that the graph given
in Fig. 2b is consistent with the technical elabora-
tion in §3. Specifically, it means that erasure, en-
capsulation, stability, and containment are all prop-
erties that we expect a causal distribution resulting

from an intervention on a concept to have. The in-
terventional distributions, hence, motivate our dis-
cussion on independent p(h∥) and p(h⊥) in §3.3.

4.3 Non-causal Controlled Generation

Controlled generation involving the manipulation
of concepts is not a new problem. We contextualize
our approach relative to Yang and Klein’s (2021)
method. They perform controlled generation as
follows. First, they train a classifier to predict a
concept value c ∈ C from the contextual represen-
tation h of a language model. Then, they perform
controlled generation by conditioning on a concept
value C = c and applying Bayes’ rule as follows:

p(x | x<t, C = c) (15)

∝ p(C = c | (Id − P )h(x<t)) p(x | x<t)

We illustrate the causal structure implied by this ap-
proach in Fig. 2d. We use P to relate this approach
to our subspace formulation,9 but Yang and Klein
(2021) do not make use of concept subspaces.

A do-intervention on C has no effect on X with
this causal structure, because there is no causal
path from C to X in Fig. 2d. This is why the
authors condition on C instead. In this sense, Yang
and Klein’s (2021) and similar methods are not
causal and cannot easily be extended to be so. As
discussed in §4.2, our approach is causal, but such
an analysis may come at the price of a number of
restricting assumptions that are not fully met in
practice. In the next section, we explain how we
go about testing these assumptions with data.

5 Experiments and Results

In the remainder of the paper, we test our frame-
work empirically. Specifically, we answer two
questions. First, are we able to find a projection
matrix P that meets our definitions in §3? Second,
can we use the resulting concept subspace to suc-
cessfully control the model’s generation behavior,
as theorized in §4?

5.1 Experimental Setup

Concepts and Models. We perform our analy-
sis on two concepts, verbal-number in English
with C = {sg, pl, n/a} and grammatical-gender
in French with C = {fem,msc, n/a}. For each of
these concepts, we study the representation spaces

9Thus, we assume that the classifier is restricted to looking
at H∥ to make its prediction.



Number (gpt2-large) Gender (gpt2-base-french)

Ancestral Nucleus Ancestral Nucleus

Total Info, Iq(C;H) 0.27±0.01 0.37±0.01 0.42±0.01 0.47±0.02
Erasure, Iq(C;H⊥) 0.11±0.01 0.19±0.01 0.27±0.01 0.30±0.02
Subspace Info, Iq(C;H∥) 0.16±0.01 0.19±0.01 0.10±0.00 0.11±0.01
Encapsulation, Iq(C;H)− Iq(C;H∥) 0.11±0.02 0.18±0.02 0.32±0.01 0.36±0.02
Reconstructed Info, Iq(C;H⊥) + Iq(C;H∥) 0.27±0.02 0.39±0.01 0.37±0.01 0.41±0.02

Erasure Ratio 0.42±0.04 0.53±0.04 0.64±0.03 0.64±0.04
Subspace Info Ratio 0.58±0.06 0.52±0.04 0.23±0.02 0.23±0.02
Encapsulation Ratio 0.42±0.06 0.48±0.04 0.77±0.02 0.77±0.02
Reconstructed Info Ratio 1.00±0.10 1.05±0.06 0.87±0.04 0.87±0.04

Baseline, Iq(X;H | C) 1.08±0.12 1.34±0.10 1.81±0.02 2.06±0.04
Containment, Iq(X;H∥ | C) 0.12±0.09 0.40±0.11 0.27±0.12 0.36±0.11
Stability, Iq(X;H | C)− Iq(X;H⊥ | C) 0.06±0.10 0.08±0.09 0.02±0.11 -0.02±0.08

Table 2: Counterfactual Information-Theoretic Results. In separate columns, we report two sets of results for
each concept, estimated over samples generated using ancestral and nucleus sampling. Each entry shows mean ±
standard deviation over random restarts (see §5.1). The first set of rows shows concept-related information metrics,
namely Erasure and Encapsulation, along with previously undefined metrics. Total Info is the amount of concept
information in the original representations, Subspace Info is concept information in the concept subspace, and
Reconstructed Info tests whether the partition is lossy relative to total information. The second set of rows shows
the ratio of each of these quantities relative to Total Info. The third set of rows shows Containment and Stability
metrics, i.e., information about the next word X , conditioned on C. We include Baseline as a reference point.

of an autoregressive language model, namely GPT2
(Radford et al., 2019).10

Data. For verbal-number in English, we use
Linzen et al.’s (2016) number agreement dataset.
This dataset consists of sentences from Wikipedia
that contain a sg or pl verb with the fact
(ground truth verb) and the foil (inflected form
of the fact to have opposite concept value). For
grammatical-gender in French, we rely on three
treebanks from Universal Dependencies (Nivre
et al., 2020): French GSD (Guillaume et al.,
2019), ParTUT (Sanguinetti and Bosco, 2015,
2014; Bosco and Sanguinetti, 2014), and Rhap-
sodie (Lacheret et al., 2014). We replicate the pre-
processing steps of Linzen et al. (2016) on each
of these datasets, i.e., we filter sentences to those
containing fem or msc nouns with an associated
adjective, and we obtain the foil by inflecting the
grammatical-gender of this adjective.

Vocabulary Partition. In §2.2, we defined
our context-dependent distribution ι as a means
of relating language models and concepts. In
practice, we drop the context-dependent aspect and
consider a single partition of Σ as our definition
of a concept. We start constructing the partition

10We rely on the implementations in the transformers library
(Wolf et al., 2020), namely: gpt2-large for verbal-number
and gpt2-base-french for grammatical-gender.

in a model-agnostic manner: we use SpaCy
(Montani et al., 2022) to tag the French and
English Wikipedia corpora (Foundation, 2023),
respectively. For verbal-number, we use the
tagged English words to obtain lists of third person
present sg and pl verbs, which we then align to
obtain matching pairs, e.g., (walks, walk). The
process is the same for grammatical-gender in
French, leading to gendered pairs of adjectives,
e.g., (français, française). For each model, we
then partition the vocabulary according to the
appropriate list, with tokens not included in
either list classified as n/a. One limitation of our
work is that we do not consider concept words
that are tokenized into more than one subword
in our analysis—for example, if disambiguates
tokenizes to [disambiguate, "#s"], then the pair
(disambiguates, disambiguate) is assigned to n/a.

The concept value n/a. In practice, we exclude
n/a from our concept set when computing our met-
rics. The reason for this is that in both text sampled
from the model and natural text, the vast majority
of words do not invoke the concept, meaning the
concept marginals pu(c) and p̃u(c) assign very low
probabilities to our values of interest. Resulting
information metrics would therefore be dominated
by n/a, so we choose to exclude it.



Finding the Concept Subspace. We find P us-
ing LEACE (Belrose et al., 2023), the state-of-the-
art method for linear concept erasure. LEACE
maximizes a cross-entropy loss on samples from
p̃u with respect to P , which constitutes a lower
bound on our correlational I(C;H⊥). Results are
reported for three P estimates obtained from ran-
domized train, test splits for each concept, and three
random restarts of the experiment for each P .

5.2 Partitioning of Concept Information

In this section, we test empirically whether
LEACE (Belrose et al., 2023) yields a P that
performs well according to our counterfactual
information-theoretic framework defined in §3.
Although LEACE is the state of the art for concept
erasure, we can anticipate several reasons why
it might perform poorly. First, LEACE does not
optimize counterfactual erasure, i.e., it does not dis-
tinguish between causal vs. spuriously correlated
components of H (see §3.2). Second, as discussed
in §3.5, the concept may be non-linearly encoded,
such that the removal of a (|C| − 1)-dimensional
subspace would not be sufficient to significantly
reduce information. Third, the models under
study are not the state of the art, meaning their
representation spaces are not necessarily of high
quality, and we are limited by available data.

Results in Table 2 for verbal-number show that
LEACE finds a one-dimensional concept subspace
that partitions only about 50% of concept informa-
tion according to our counterfactual metrics (Era-
sure Ratio and Subspace Info Ratio). Total amount
of information in H⊥ and H∥ is slightly greater
than Total Info, but no information is lost in the
partitioning (Reconstructed Info Ratio). Stability
values near 0 show that this partitioning preserves
non-concept information in S⊥C . Containment is rel-
atively high compared to the Baseline, meaning that
the concept subspace found by LEACE is not min-
imal. For grammatical-gender however, LEACE
does not find a good projection matrix. Approxi-
mately only 30% of concept information is erased,
and information is lost in the case of ancestral sam-
pling (Reconstructed Info Ratio less than 1).

Looking back on the three failure modes out-
lined at the start of this section, these results show
that LEACE can sometimes return an adequate par-
titioning according to our framework, but does not
drive erasure to 0. Empirically, it is difficult to
determine whether this is due to the LEACE objec-

Orig
. A

cc
. (s

g f
ac

t)

Orig
. A

cc
. (p

l fa
ct)

Era
se

d A
cc

. (s
g f

ac
t)

Era
se

d A
cc

. (p
l fa

ct)

Suc
ce

ss 
Rate

 D
o C

=sg

Suc
ce

ss 
Rate

 D
o C

=pl
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GPT2-large,
 Number

Orig
. A

cc
. (m

sc
 fa

ct)

Orig
. A

cc
. (f

em
 fa

ct)

Era
se

d A
cc

. (m
sc

 fa
ct)

Era
se

d A
cc

. (f
em

 fa
ct)

Suc
ce

ss 
Rate

 D
o C

=msc

Suc
ce

ss 
Rate

 D
o C

=fem

GPT2-base-french,
 Gender

Majority

Figure 3: Controlled Generation Experiment. Reported
values are computed on (context, fact, foil) samples
from the test split of our curated datasets of natural text
used to train LEACE. We report results separately de-
pending on whether the fact for the given context is
sg or pl. Orig. Acc refers to the accuracy with which
the model chooses fact over foil using original repre-
sentations. Erased Acc. is the accuracy after erasure.
Success Rate Do measures, for example for Do C=sg
(see Eq. (13)), the rate at which the intervention induces
the model to assign higher probability to the sg element
of the (fact, foil) pair over its pl counterpart, reported on
average over sg and pl contexts in the test set.

tive falling victim to spurious correlations or to the
concept encoding being non-linear. If the former is
true, one solution might be to learn a P that opti-
mizes our counterfactual framework. However, this
is computationally intractable due to nested sums
over the infinite representations space H, and we
leave the development of a tractable approximation
to future work. We attribute the failure to learn a
concept partition for grammatical gender to lim-
itations of the model itself. Compared to English,
the best available French gpt2 model is trained on
less data and has fewer parameters. In our prelimi-
nary experiments, we noticed that smaller English
gpt2 models for verbal-number were also notably
worse than gpt2-large.

5.3 Causal Controlled Generation

In §4, we argued for a causal structure for lan-
guage generation that allows us to intervene on the
concept-valued random variable C. We now test
this causal model empirically by computing the do-
intervention in Eq. (13). We define success for the
intervention using the forced-choice setup shown
in sentences (1-a) and (1-b). For example, given a
context with a sg fact, we consider do(C = pl) suc-
cessful if p(x | H⊥ = h⊥, do(C = pl)) assigns



higher probability to the pl foil over sg fact.
Results for this experiment are shown in Fig. 3.

For context, we report the model’s accuracy in the
forced-choice setup before (Orig. Acc.) and after
(Erased Acc.) erasure. We note the consistency
between information-theoretic metrics in Table 2
and post-erasure accuracy in Fig. 3—the erasure
intervention successfully lowers the accuracy of the
minority class pl for verbal-number, however the
intervention fails to significantly reduce accuracy
for grammatical-gender.

With this context in mind, the do-intervention
is remarkably successful for verbal-number. In
particular, do(C = pl) succeeds for roughly 90%
of textual contexts in getting the model to assign
higher probability to the pl form of the (fact, foil)
pair. This result is notable because the low accuracy
on predicting the pl fact after erasure means that,
without the do-intervention, erasure strongly biases
the model against generating the pl form. By acting
solely in our concept subspace via pl values of
h∥, we are able to instead get the model to almost
always predict pl.

Results for gpt2-base-french are much
worse—do(C = msc) actually reduces the accu-
racy relative to after erasure, while, with do(C =
fem), we see no significant difference. Viewed to-
gether with results in §5.2, this confirms that our
causal structure only holds given an adequate P un-
der our counterfactual framework. Nonetheless, the
success of the do-intervention on verbal-number
despite concept information not being perfectly iso-
lated in H∥ suggests that identifying the causal
concept direction is not a necessary requirement
for causal concept-based controlled generation, so
long as H∥ contains a significant share of concept
information.

6 Related Work

In terms of our stated goal of developing a geo-
metrically oriented causal probing framework, our
work is most closely related to Elazar et al. (2021)
and Lasri et al. (2022). Elazar et al. (2021) pose the
problem of identifying a subspace used by a model
to perform a task via an erasure intervention, on
the assumption that a reduction in word prediction
accuracy after intervention certifies the usage of the
subspace. Lasri et al. (2022) applied Linzen et al.’s
(2016) forced choice approach to the problem of
evaluating the impact of concept erasure. Our work
relies on a behavioral (forced choice) dataset for

learning the linear projection matrix, but impor-
tantly, not for evaluating usage. Our definition of
erasure, for example, formalizes the expectation
that all concept-related word pairs should be indis-
tinguisable under the language model after erasure
given any contextual representation.

Previous work is also interested in measuring
the degree to which erasure preserves non-concept
related features. Ravfogel et al. (2020, 2022a,b)
perform various tests, e.g., evaluating whether
the model’s understanding of word similarity
is affected by erasure using SimLex-999 (Hill
et al., 2015), which have little to do with language
modeling. Elazar et al. (2021) assess damage to
pLM via two different tests. First, they attempt to
recover task performance after concept erasure by
finetuning the language model on gold annotations
for the concept. Fine-tuning results in the paper
show an increase in task performance, which
suggests that further training can improve the
model overall, casting doubt on the validity of
performance recovery as an evaluation criterion.
Second, the authors also report the overall KL
divergence in the LM’s output distribution, over
the entire vocabulary. This last approach was a
source of inspiration for our work, which delves
much deeper into this distributional distance idea
via our stability and containment tests.

7 Conclusion

In this paper, we set out to define an intrinsic mea-
sure of information in a subspace of a language
model’s representation space. In light of the cor-
relational failure mode of linear concept erasure
methods (Kumar et al., 2022a), doing so requires
a counterfactual approach: By assuming statistical
independence between the components of a repre-
sentation in the concept subspace and its orthogo-
nal complement, we are able to correctly measure
information in a subspace by marginalizing out the
remainder of the space. To the extent that a causal
concept subspace exists for a particular concept
and model, erasure under this metric is optimized
by that subspace. In practice, we did not actually
optimize this metric. Our theoretical analysis, com-
bined with the efficacy of linear erasure methods
using a correlational objective, suggests a tanta-
lizing prospect: That a counterfactual objective
could identify a one-dimensional causal subspace
containing all information about the concept em-
pirically.
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Ginter, Jan Hajič, Christopher D. Manning,
Sampo Pyysalo, Sebastian Schuster, Francis Ty-
ers, and Daniel Zeman. 2020. Universal Depen-
dencies v2: An evergrowing multilingual tree-
bank collection. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference,
pages 4034–4043, Marseille, France. European
Language Resources Association.

Judea Pearl. 2009. Causal inference in statistics:
An overview. Statistics Surveys, 3:96–146.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maud-
slay, Ran Zmigrod, Adina Williams, and Ryan

Cotterell. 2020. Information-theoretic probing
for linguistic structure. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, pages 4609–4622, Online.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learn-
ers.

Shauli Ravfogel, Yanai Elazar, Hila Gonen,
Michael Twiton, and Yoav Goldberg. 2020. Null
it out: Guarding protected attributes by iterative
nullspace projection. In Proceedings of the 58th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 7237–7256, Online.
Association for Computational Linguistics.

Shauli Ravfogel, Yoav Goldberg, and Ryan Cot-
terell. 2023. Log-linear guardedness and its im-
plications. In Proceedings of the 61st Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
9413–9431, Toronto, Canada. Association for
Computational Linguistics.

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and
Yoav Goldberg. 2021. Counterfactual interven-
tions reveal the causal effect of relative clause
representations on agreement prediction. In Pro-
ceedings of the 25th Conference on Computa-
tional Natural Language Learning, pages 194–
209, Online. Association for Computational Lin-
guistics.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg,
and Ryan Cotterell. 2022a. Linear adversarial
concept erasure. In Proceedings of the 39th In-
ternational Conference on Machine Learning,
volume 162 of Proceedings of Machine Learn-
ing Research, pages 18400–18421. PMLR.

Shauli Ravfogel, Francisco Vargas, Yoav Goldberg,
and Ryan Cotterell. 2022b. Kernelized concept
erasure. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics.

Manuela Sanguinetti and Cristina Bosco. 2014.
Converting the parallel treebank ParTUT in Uni-
versal Stanford Dependencies. In Proceedings
of the 1rst Conference for Italian Computational
Linguistics (CLiC-it 2014), Pisa, Italy.

https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.5281/ZENODO.1212303
https://doi.org/10.5281/ZENODO.1212303
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
https://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://aclanthology.org/2023.acl-long.523
https://aclanthology.org/2023.acl-long.523
https://doi.org/10.18653/v1/2021.conll-1.15
https://doi.org/10.18653/v1/2021.conll-1.15
https://doi.org/10.18653/v1/2021.conll-1.15
https://proceedings.mlr.press/v162/ravfogel22a.html
https://proceedings.mlr.press/v162/ravfogel22a.html
https://arxiv.org/abs/2201.12191
https://arxiv.org/abs/2201.12191
https://doi.org/10.12871/clicit2014161
https://doi.org/10.12871/clicit2014161


Manuela Sanguinetti and Cristina Bosco. 2015.
PartTUT: The Turin University Parallel Tree-
bank, pages 51–69. Springer International Pub-
lishing, Cham.

Claude E. Shannon. 1948. A mathematical theory
of communication. The Bell System Technical
Journal, 27(3):379–423.

Elena Voita and Ivan Titov. 2020. Information-
theoretic probing with minimum description
length. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 183–196, Online. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexan-
der Rush. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demon-
strations, pages 38–45, Online. Association for
Computational Linguistics.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell
Stewart, and Stefano Ermon. 2020. A theory
of usable information under computational con-
straints. In International Conference on Learn-
ing Representations.

Kevin Yang and Dan Klein. 2021. FUDGE: Con-
trolled text generation with future discriminators.
In Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 3511–3535, Online. Associ-
ation for Computational Linguistics.

https://doi.org/10.1007/978-3-319-14206-7_3
https://doi.org/10.1007/978-3-319-14206-7_3
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=r1eBeyHFDH
https://openreview.net/forum?id=r1eBeyHFDH
https://openreview.net/forum?id=r1eBeyHFDH
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276


A Proof of Proposition 3.3

Proposition 3.3. Suppose P is a ε-eraser and (Id −P ) is a ε-encapsulator of C with respect to H. Then,
as ε → 0, the following holds

Iq(C;H) = Iq(C;H⊥) + Iq(C;H∥) (12)

Proof. On the left-hand side,

Iq(C;H) + ε ≥ Iq(C;H∥) + ε (data-processing inequality) (16a)

≥ Iq(C;H∥) + Iq(C;H⊥) (P is an ε-eraser) (16b)

On the right-hand side,

Iq(C;H) + ε ≤ Iq(C;H∥) + 2ε ((Id − P ) is an ε-encapsulator) (17a)

≤ Iq(C;H∥) + Iq(C;H⊥) + 2ε (non-negativity of MI) (17b)

Combining Eq. (16b) and Eq. (17b), we have

Iq(C;H∥) + Iq(C;H⊥) ≤ Iq(C;H) + ε (18a)

≤ Iq(C;H∥) + Iq(C;H⊥) + 2ε (18b)

Taking ε → 0 in Eq. (18), we have Eq. (12)

Iq(C;H) = Iq(C;H∥) + Iq(C;H⊥)

■

B Proof of Theorem 4.1

Theorem 4.1. Consider a joint distribution p that factors as in Fig. 2b parameterized by orthogonal
projection matrix P . Under the distribution

pdo(x,h⊥,h∥, c) = p(x | h⊥,h∥) (14)

p(h⊥ | do (C = c)) p(h∥ | do (C = c)) p(c)

we have that P is an ε-eraser, Id − P is an ε-encapsulator, Id − P is an ε-container and P is an
ε-stabilizer for every ε > 0.

Proof. Given the factorization in Fig. 2b, we derive the following equation using the independence
assumptions given in Fig. 2b:

pdo(x,h⊥,h∥, c) = p(x | h⊥,h∥) p(h⊥ | do (C = c)) pdo(h∥ | do (C = c)) p(c) (20a)

= p(x | h⊥,h∥)p(h⊥) pdo(h∥ | c) p(c) (20b)

Erasure. Given Eq. (20b), we have the following joint distribution

pdo(c,h⊥) =
∑

h∥∈H∥

∑
x∈Σ

pdo(x,h⊥,h∥, c) (21a)

=
∑

h∥∈H∥

∑
x∈Σ

p(x | h⊥,h∥)p(h⊥) pdo(h∥ | c) p(c) (21b)

=
∑

h∥∈H∥

(∑
x∈Σ

p(x | h⊥,h∥)

)
︸ ︷︷ ︸

=1

p(h⊥) pdo(h∥ | c) p(c) (21c)

=

 ∑
h∥∈H∥

pdo(h∥ | c)


︸ ︷︷ ︸

=1

p(h⊥) p(c) (21d)

= p(h⊥) p(c) (21e)



The mutual information I(C;H⊥) can be computed as follows

I(C;H⊥) =
∑
c∈C

∑
h⊥∈H⊥

pdo(c,h⊥) log
pdo(c,h⊥)

p(c)p(h⊥)
(22a)

=
∑
c∈C

∑
h⊥∈H⊥

pdo(c,h⊥) log
p(h⊥) p(c)

p(c)p(h⊥)
(applying Eq. (21e)) (22b)

= 0 < ε (22c)

for every ε > 0.

Encapsulation. The following equation holds given Eq. (20b)

I(C;H)− I(C;H∥) = I(C;H∥,H⊥)− I(C;H∥) (H = H⊥,H∥) (23a)

= I(C;H⊥ | H∥) (23b)

= I(C;H⊥) (H⊥,H∥ are independent (§3.3)) (23c)

= 0 < ε (applying Eq. (22c)) (23d)

(23e)

Containment. The following joint distribution can be derived from Eq. (20b)

pdo(x,h∥, c = c) =
∑

h⊥∈H⊥

pdo(x,h⊥,h∥, c = c) (24a)

=
∑

h⊥∈H⊥

p(x | h⊥,h∥)p(h⊥) pdo(h∥ | c = c) p(c = c) (24b)

=
∑

h⊥∈H⊥

p(x,h⊥,h∥)

p(h⊥,h∥)
p(h⊥) pdo(h∥ | c = c) p(c = c) (24c)

=
∑

h⊥∈H⊥

p(x,h⊥,h∥)

����p(h⊥) p(h∥)
����p(h⊥) pdo(h∥ | c = c) p(c = c) (H⊥,H∥ are independent (§3.3)) (24d)

=
∑

h⊥∈H⊥

p(x,h⊥ | h∥)︸ ︷︷ ︸
=p(x|h∥)

pdo(h∥ | c = c) p(c = c) (24e)

= p(x | h∥) pdo(h∥ | c = c) p(c = c) (24f)

= p(x | h∥, c = c) p(h∥ | c = c) (H∥ is deterministic given C ) (24g)

The mutual information I(X;H∥ | C = c) can be computed as follows

I(X;H∥ | C = c) (25a)

=
∑
x∈Σ

∑
h∥∈H∥

pdo(x,h∥, c = c) log
pdo(x,h∥, c = c)

p(x | c = c)p(h∥|c = c)
(25b)

=
∑
x∈Σ

∑
h∥∈H∥

pdo(x,h∥, c = c) log
p(x | h∥, c = c) p(h∥ | c = c)

p(x | c = c) p(h∥ | c = c)
(applying Eq. (24g))

(25c)

=
∑
x∈Σ

∑
h∥∈H∥

pdo(x,h∥, c = c) log
p(x | h∥, c = c) p(h∥ | c = c)

p(x | h∥, c = c) p(h∥ | c = c)
(H∥ is deterministic given C)

(25d)

= 0 < ε (25e)



Stability. The following equation holds given Eq. (20b)

I(X;H | C = c)− I(X;H⊥ | C = c) (26a)

=I(X;H⊥,H∥ | C = c)− I(X;H⊥ | C = c) (H = (H⊥,H∥)) (26b)

=I(X;H∥ | H⊥, C = c) (conditional mutual information) (26c)

=I(X;H∥ | C = c) (H⊥,H∥ are independent (§3.3)) (26d)

=0 < ε (applying Eq. (25e)) (26e)

■


