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Abstract

Language models (LMs) are increasingly
studied as models of human language learners.
Due to the nascency of the field, it is not
well-established whether LMs exhibit similar
learning dynamics to humans, and there are
few direct comparisons between learning
trajectories in humans and models. Word
learning trajectories for children are relatively
well-documented, and recent work has tried to
extend these investigations to language models.
However, there are no widely agreed-upon met-
rics for word learning in language models. We
take a distributional approach to this problem,
defining lexical knowledge in terms of proper-
ties of the learned distribution for a target word.
We argue that distributional signatures studied
in prior work fail to capture key distributional
information. Thus, we propose an array of
signatures that improve on earlier approaches
by capturing knowledge of both where the
target word can and cannot occur as well as
gradient preferences about the word’s appro-
priateness. We obtain learning trajectories for
a selection of small language models we train
from scratch, study the relationship between
different distributional signatures, compare
how well they align with human word learning
trajectories and interpretable lexical features,
and address basic methodological questions
about estimating these distributional signatures.
Our metrics largely capture complementary
information, suggesting that it is important not
to rely on a single metric. However, across all
metrics language models’ learning trajectories
fail to correlate with children’s.

FilippoFicarra/word_learning

1 Introduction

There is a long tradition of characterizing words
in terms of their distributions (Wittgenstein, 1953).
The distributional hypothesis (Harris, 1954;
Lenci, 2008), which characterizes knowledge of
a word in terms of “the company it keeps” (Firth,
1957), has proven surprisingly prescient. This
is the idea behind static word representations

(Deerwester et al., 1990; Landauer and Dumais,
1997; Hofmann, 1999; Mikolov et al., 2013;
Pennington et al., 2014) estimated from data as
well as modern (large) language models (OpenAI,
2022; Meta, 2024). While this distributional
approach to training language models (LMs) is now
well-established, only recently has distributional
information been explored as a tool for evaluating
lexical knowledge in LMs.

In the last few years, there has been growing in-
terest in studying word learning in language models
(Nikolaus and Fourtassi, 2021a; Chang and Bergen,
2022; Portelance et al., 2024, 2023; Vong et al.,
2024; Zhuang et al., 2024b,a; Ma et al., 2024).
Most of these studies are part of a larger research
program to use LMs to inform the study of hu-
man language acquisition by serving as convenient,
controllable, and effective models of human devel-
opment (Dupoux, 2018; Linzen, 2019; Warstadt
and Bowman, 2022). From this perspective, it is
desirable to have LMs with human-like learning
trajectories, as they can better serve as generaliz-
able models of human learners. Word learning has
a potentially important role in the success of this re-
search program because it is one of the best proving
grounds for comparing the learning trajectories of
humans and LMs head to head. While some stud-
ies (e.g., Choshen et al., 2022) have tracked syntax
learning in LMs using benchmarks like BLiMP
(Warstadt et al., 2020), corresponding data for chil-
dren is more limited in scope (Evanson et al., 2023).
There is also child data on phonological learning
(Lavechin et al., 2022) which can be explored fur-
ther as audio-based LMs improve.

Fortuitously, word learning trajectories in
text-based LMs can be easily compared against a
wealth of child data in multiple languages thanks
to the massive efforts of caregivers and scholars
who report and curate child word learning data in
the Wordbank database (Frank et al., 2017). Unfor-
tunately, the caregiver reporting approach (Fenson
et al., 2013) used in Wordbank is not immediately
applicable to LMs, and there is no consensus on
how to benchmark word learning in LMs. Zhuang
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et al. (2024b) explored word learning through
different methods, including comparing LMs’
word similarity scores to humans’ (Finkelstein
et al., 2001; Bruni et al., 2012; Hill et al., 2015;
Gerz et al., 2016), classifying lexical entailment
relations (Santus et al., 2016), predicting semantic
features (Buchanan et al., 2019) and using minimal
pairs to measure LM preferences for appropriate
word usage (Marvin and Linzen, 2018). Other
works rely on visual stimuli to ground evaluations
for multimodal models (Nikolaus and Fourtassi,
2021a; Berger et al., 2022; Vong et al., 2024).
Notably, Chang and Bergen (2022) and Portelance
et al. (2023) take a distributional approach,
characterizing lexical knowledge in terms of the
LM’s surprisal, an information-theoretic quantity
which has been widely studied in psycholinguistics
(Hale, 2001; Levy, 2008).

In this study, we take inspiration from Chang
and Bergen’s (2022) approach to tracking through-
out training the distributional signatures of
word learning, i.e., a metric characterizing for a
single point in training the model’s distributional
knowledge about a particular word. We formalize
their approach and build on it in several respects.
Chang and Bergen consider only LMs’ surprisal in
a context where the target word is appropriate, and
(implicitly) rely on a trivial approximation of the
ground truth distribution in evaluating the quality
of lexical knowledge. In contrast, we propose a
family of distributional signatures allowing for the
consideration of the LM’s learned distribution in
both appropriate and inappropriate contexts. We
also introduce distributional signatures that are
truly intrinsic to the model itself as well as strongly
reference signatures that compare the learned
distribution to a non-trivial ground truth, which we
approximate using a large pretrained LM.

In our experiments, we train language models
from scratch on three datasets resembling the in-
put to children to varying degrees. We record
the distributional signatures for a set of common
words throughout training, and following Chang
and Bergen we apply a threshold to the measured
learning trajectories to obtain an age-of-acquisition
(AoA) for each word. We then conduct analyses to
answer the following questions:

1. Which methods allow us to reliably extract
AoA scores?

2. How does the order of word acquisition in
LMs compare to that of children?

3. What are the empirical properties of the learn-
ing trajectories for different distributional sig-
natures?

We find that the learning trajectories for different
distributional signatures are indeed different from
each other, suggesting that earlier approaches failed
to capture some aspects of word learning. While
many signatures, like Chang and Bergen’s (2022),
give trajectories that are highly correlated with sim-
ple features like lexical frequency, other signatures
are harder to predict and therefore may capture
more nontrivial information. However, we find
that learning trajectories for some distributional
signatures fail to converge, making AoAs difficult
to infer. Finally, no signature yields AoA scores
that are strongly correlated with children’s AoA,
supporting the conclusion that with current meth-
ods, LMs’ learning patterns are poorly aligned with
humans’, and underscoring a limitation of current
LMs as models of human development. We there-
fore call for future work to evaluate and improve
the human-likeness of LMs’ learning trajectories
using the distributional signatures we propose.

2 Preliminaries

Let Σ be an alphabet, a finite, non-empty set, of
characters, e.g., Unicode symbols.1 A string is
a finite sequence of characters, drawn from an
alphabet Σ. The set Σ∗, the Kleene closure of Σ,
is the set of all strings with characters drawn from
Σ including the empty string ε. We consider two
distinguished types of strings. First, we define
a word2 as a character string w ∈ Σ∗, which is
believed to operate as a lexical item. Second, we
call an arbitrary character string that precedes a
word a context. We denote a context as c ∈ Σ∗.

A language model p is a probability distribution
over Σ∗. A language model’s prefix probability
is defined as the following sum

−→p (y)
def
=

∑
y′∈Σ∗

p(yy′). (1)

1Note that most modern language models operate over
tokens, rather than over characters. Our presentation is in
terms of characters for simplicity.

2Defining a word is a complex matter, and we concede
to not having down it justice in this article. As a simple
example, consider the English verb to run. If a child says,
I ran, we probably think they used to run and this should,
ideally, be taken into account in our framework. Yet, under our
current set-up, we are not able to account for such inflection.
Moreover, even beyond morphological inflection, it is hard to
define in se; see Marantz (2001) for a longer discussion.
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Throughout the paper, we will primarily be inter-
ested in a specific ratio of p’s prefix probabilities,
which we will use to define the probability of a
word in a context:

−→p (w | c) def
=

−→p (cw)
−→p (c)

, (2)

i.e., the probability of a word given a context.3

We call Eq. (2) a language model p’s word
distribution. We are also interested in the surprisal
of a word in a context, denoted − log−→p (w | c).

Now we derive a language model p’s context
distribution by Bayes’ rule as follows

−→pκ(c | w) =
−→p (w | c)−→p (c)∑

c∈Σ∗
−→p (w | c)−→p (c)

. (3)

Under the assumption that p is of finite expected
length, then

∑
c∈Σ∗

−→p (w | c)−→p (c) is always fi-
nite (Opedal et al., 2024, see Section 2.1).

Complementarily, we define a word w’s
negative context distribution as

−→pκ(c | ¬w) =
(1−−→p (w | c))−→p (c)∑

c∈Σ∗(1−−→p (w | c))−→p (c)
. (4)

In the remainder of this paper, we will distin-
guish three LMs: p, the underlying distribution
that we take to have generated the observed strings;
q, a parameterized model whose parameters we
estimate; and r, a pre-trained reference LM, po-
tentially larger and trained on more data. A stan-
dard method of constructing a language model p
that approximates q is maximum-likelihood esti-
mation. Suppose we observe a bag of N sam-
ples Hy(n)INn=1 where y(n) ∼ p, then we choose a
model q that minimizes the following cross-entropy
−
∑N

n=1 log q(y
(n)).

3 Defining Lexical Knowledge

Our goal is to evaluate word learning in LMs by fol-
lowing the trajectory throughout training the LM
of a distributional signature for each target word.
However, both in terms of trajectory extraction and
signature design, there are many design choices. In
this section, we explore and discuss the implica-
tions of a range of choice points in defining the dis-
tributional signature that is tracked during training.
In §4, we discuss how to extract a trajectory from a
timestamped sequence of distributional signatures.

3In our formalism, −→p (w | c) is not a probability distribu-
tion over words. Rather, −→p (w | c) is simply the probability
of the character string w following c.

Chang and Bergen (2022). The most direct pre-
decessor to this work, Chang and Bergen (2022),
considered a single distributional signature: the
surprisal under the LM of the target words in con-
texts where the word occurs in a test corpus. This
is a natural quantity to track during training, as it
is equivalent to the cross entropy loss per token
restricted to only samples from a single class. In
our notation, they consider

σ̂+(w)
def
= − 1

M

M∑
m=1

log−→q (w | c(m)), (5)

where −→q is the LM we are analyzing and the con-
texts c(m) are contexts taken from a corpus that
occur before the word w, which we refer to as
positive contexts for w. We observe that—under
the assumption that the positive contexts are sam-
pled from the ground true context distribution, i.e.,
c(m) ∼ −→pκ(· | w)—Eq. (5) is a Monte Carlo esti-
mator of the quantity

σ+(w)
def
= −

∑
c∈Σ∗

−→pκ(c | w) log−→q (w | c). (6)

However, even in expectation, there is one salient
manner in which Chang and Bergen’s (2022) dis-
tributional signature misses potentially valuable
distributional information about the target word: it
fails to consider the LM’s distributional knowledge
about w in negative contexts where w is not found.
Moreover, beyond this limitation, this distributional
signature is the only element in a potentially very
large design space; in the remainder of this section,
we also explore additional distributional signatures.

Considering negative contexts. Knowing the
distribution of w requires not just knowing when
the word is appropriate in context, but also when
it is inappropriate. Thus, we can instead study the
LM’s distribution in contexts sampled according to
a word’s negative context distribution −→pκ(· | ¬w),
i.e., the context distribution over all those contexts
that occur before a word that is not w and does
not have w as a prefix; see §2. Thus, analogously
to Eq. (6), we define the following distribtional
signature:

σ−(w)
def
= −

∑
c∈Σ∗

−→pκ(c | ¬w) log−→q (w | c). (7)

Again, under the assumption that negative contexts
were sampled from p, i.e., c(m) ∼ −→pκ(· | ¬w), we
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Positive Negative All

True −
∑
c∈Σ∗

−→pκ(c | w) log−→q (w | c) −
∑
c∈Σ∗

−→pκ(c | ¬w) log−→q (w | c) −
∑
c∈Σ∗

−→pκ(c) log−→q (w | c)

Intrinsic −
∑
c∈Σ∗

−→qκ(c | w) log−→q (w | c) −
∑
c∈Σ∗

−→qκ(c | ¬w) log−→q (w | c) −
∑
c∈Σ∗

−→qκ(c) log−→q (w | c)

Reference
∑
c∈Σ∗

−→pκ(c | w)

∣∣∣∣log −→q (w | c)
−→r (w | c)

∣∣∣∣ ∑
c∈Σ∗

−→pκ(c | ¬w)

∣∣∣∣log −→q (w | c)
−→r (w | c)

∣∣∣∣ ∑
c∈Σ∗

−→pκ(c)
∣∣∣∣log −→q (w | c)

−→r (w | c)

∣∣∣∣
Table 1: Overview of all distributional signatures measured in our experiments.

can derive a Monte Carlo estimator as follows

σ̂−(w)
def
= − 1

M

M∑
m=1

log−→q (w | c(m)). (8)

All contexts. Rounding out this series of related
signatures, we design a distributional signature that
considers the LM’s predictions in all—both posi-
tive and negative—contexts

σ±(w)
def
= −

∑
c∈Σ∗

−→pκ(c) log−→q (w | c), (9)

where −→pκ(·) is the unconditional distribution over
contexts. Analogously, we arrive at the following
Monte Carlo estimator where c(m) ∼ −→pκ(·)

σ̂±(w)
def
= − 1

M

M∑
m=1

log−→q (w | c(m)). (10)

Intrinsic Signatures. We now discuss a different
class of distributional signatures. Rather than
taking the expectation with respect to the true
context distribution −→pκ(· | w), we consider an
intrinsic signature where we take the expectation
with respect to the model −→qκ(· | w). This yields
three distributional signatures analogous to those
above which are defined in the second row in
Table 1, which we term σI+, σI−, and σI±,
respectively. We discuss estimating the intrinsic
distribution signatures in App. A.

Comparing to a reference distribution. Addi-
tionally, the signatures σ+, σ−, and σ± estimate
the relationship between the model and the under-
lying distribution p. However, the true language
model p may not be achievable—both due to the
finite training data or the model class itself. Thus,
it also makes sense to compare q to reference
distribution r, taken to be a larger LM trained
on more data. Following this intuition, we define
three reference signatures, listed in the third row

of Table 1, and denote them as σR+, σR− and σR±,
respectively. It is easily seen that the reference
signatures are themselves distance metrics between
the target model and the reference distribution.

4 Analyzing Trajectories

Given our goal of studying the word acquisition
process of LMs, we would like to study the trajec-
tory of a signature σ for various words throughout
the training of the target LM. However, an entire
trajectory may be too much information for some
analyses. In this section, we consider a family of
statistics that can be extracted from the trajectory
and review the main choice points in doing so.

Determining AoA by Thresholding While
many statistics are possible, we focus on age of
acquisition (AoA), which is a single number
that should be interpreted as the point at which
learning has advanced to a satisfactory degree.
For human learners, Braginsky et al. (2016) take
AoA as the age when 50% of children are such
that their caregivers report them as understanding
the word. Chang and Bergen (2022) apply this
thresholding approach to LMs. Given a trajectory,
they take the AoA to be the first time step at which
the signature reaches a threshold defined as τ% of
the way between some initial value representing
the beginning of learning and some final value
representing the endpoint of learning.4 Unfortu-
nately, thresholding in this way is only appropriate
when σ̂ changes (roughly) monotonically across
time steps. While this is true of some signatures
we consider, we find empirically that σ̂+, σ̂I±, σ̂I+
and σ̂I− are exceptions. Thus, we adopt a different

4This comes with several choice points: Chang and
Bergen explore a range of values for τ and report little change
in qualitative results, while Ma et al. (2024) do observe
important differences due to the choice of τ . In defining the
initial and final values, a naive approach would be choosing
the first and last values. Chang and Bergen (2022) select the
initial value as the surprisal under a random chance baseline.
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approach to extracting AoAs based on the notion
of a Cauchy sequence. Intuitively, we say that the
target word is learned at the point in the trajectory
where the value of the signature becomes close
to its neighboring points in the trajectory. Our
approach is defined formally in App. D. For the
sake of uniformity, we apply this approach to all
signatures and leave an exploration of thresholding
approaches for suitable signatures to future work.

Idealizing the Trajectory Empirical trajectories
may be noisy due to estimation errors from a test
corpus or local instabilities during training. We
consider several techniques to idealize the trajec-
tory and reduce noise before thresholding. One
approach to idealize the trajectory and reduce noise
before thresholding is parametric curve fitting. Bra-
ginsky et al. (2019) and Chang and Bergen (2022)
assume trajectories form a sigmoid curve (for LMs,
the x-axis should be the log of the number of steps).
Outside of the context of word learning, Zhang et al.
(2021) fit exponential learning curve inspired by
psychometrics literature on learning to LM results
(Heathcote et al., 2000; Leibowitz et al., 2010).
However, this approach only applies if the typical
shape of the trajectory is known. If this is not the
case, one can instead smooth the curve with a filter
such as a moving average or an overparameterized
curve such as a generalized additive model (GAM)
(Hastie and Tibshirani, 1986), as done by Chang
et al. (2024). This approach has the benefits of
preserving the shape of the curve with high fidelity
and can be applied to curves of any shape. A disad-
vantage is that it does not guarantee that a threshold
or convergence point is reached. As several of our
signatures give trajectories that do not follow a con-
sistent shape, we opt to apply a moving average to
smooth the trajectories.

5 Methods

5.1 Language Models
We train several language models to analyze our
proposed notions of word learning.

Training Data. We use three datasets previously
released with train/test splits for training and eval-
uating our LMs: (i) Unified: This dataset was
compiled by Constantinescu et al. (2024). It con-
sists of approximately 600M words sampled from
a combination of three corpora: Project Guten-
berg,5 Wikipedia, and OpenSubtitles (Lison and

5https://gutenberg.org

Tiedemann, 2016). Given that a typical 13-year-old
person may be exposed to around 100M words
(Gilkerson et al., 2017), this dataset is not as repre-
sentative of the actual input to children, although
it contains a large proportion of spoken language.
(ii) BabyLM: This is the 100M text-only corpus
from the second BabyLM Challenge (Choshen
et al., 2024). The dataset is designed to be rela-
tively developmentally plausible while also contain-
ing the amount of input that a typical adolescent
is exposed to. It includes child-directed speech
from CHILDES (MacWhinney, 2000) and chil-
dren’s stories from Project Gutenberg (Gerlach and
Font-Clos, 2020), as well as dialogue such as BNC
and the Switchboard Corpus (Stolcke et al., 2000),
along with Simple English Wikipedia and Open
Subtitles. (iii) CHILDES: This is the CHILDES
subset taken from BabyLM consisting of 29M to-
kens of child-directed speech.

These datasets balance developmental plausi-
bility against quantity. Our motivation for train-
ing on datasets like BabyLM and CHILDES is to
observe whether more developmentally plausible
training distributions result in more human-like
word-learning trajectories.

To estimate the signatures for each word, we
sample 100 positive and 100 negative contexts from
the BabyLM test set. We use the same test contexts
for all models regardless of training data in order
to make cross-model comparisons more fair.

Models. We train GPT-2 from scratch following
the training procedure given by Radford et al.
(2019). To reduce variance in performance due
to random seed, we train three variations of each
model using different random seeds. To compute
the reference signatures (σ̂R+, σ̂R−, σ̂R±) we use
Llama-3.1-8B6 as the reference distribution r.

Full details regarding the hyperparameters, train-
ing duration, and loss curves can be found in
App. C. As we are interested in analyzing the learn-
ing trajectories for models, it is important that they
are trained for a reasonable duration. For mod-
els trained on BabyLM and CHILDES we apply
early stopping, i.e., we choose the best model on a
held-out development set, as we found that models
overfit eventually. For models trained on Unified
we train for 30,000 steps, or 12 epochs, follow-
ing (Constantinescu et al., 2024). We estimate that
Chang and Bergen (2022) train models on about

6https://ai.meta.com/blog/meta-llama-3-1/

5

https://gutenberg.org
https://ai.meta.com/blog/meta-llama-3-1/


0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

4

8

12

16

+

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

10

15

20

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

8

12

16

±

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

5

10

15

I +

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

5

10

15

20
I

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

20

40

60

I ±

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

3

6

9

R +

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

2

4

6

R

0.00 0.25 0.50 0.75 1.00
Log Step (Normalized)

2

4

6

R ±

16 20 24 28
Months

0.0

0.3

0.6

0.9

Children

the off water puzzle good orange go climb

Figure 1: Trajectories for a sample of 8 words for LMs trained on the Unified dataset. We sample one high-frequency
(solid line) and one low-frequency (dashed) word from each of four categories: function word, noun, adjective, verb.
The y-axis represents the value of the estimator in all σ plots, while in the children plot, it represents the proportion
of children who produced the word.

1.6× 109 input tokens (counting repetitions).7 By
comparison, our models were trained for a duration
of between 6.8× 108 and 7.8× 1010 tokens.

5.2 The Wordbank Corpus

Child AoA data comes from the North American
English portion of the Wordbank database (Frank
et al., 2017). For each word an month, Wordbank
gives the proportion of children in the study that
have produced the word by that point. The AoA is
the first month by which at least 50% children have
produced that word (Goodman et al., 2008; Bra-
ginsky et al., 2016). We remove words for which
we were not able to sample 100 positive context
types from the BabyLM dataset, leaving us with
305 words. The words in Wordbank were divided
in 4 different lexical categories: NOUNS (101),
PREDICATES (124), FUNCTION WORDS (45) and
OTHER (49). Words in the category OTHER have
inconsistent properties,8 so we exclude them from
some analyses, giving us 262 words.

6 Examining LM Learning Trajectories

Before quantitatively comparing LM and child
word learning trajectories in §7, we perform several
analyses focusing on LM trajectories alone.

7This estimate is based on the reported 100k steps with a
batch size of 128 and a context window of 128.

8For example babysitter, doctor, brother, grandma were
categorized as OTHER while they clearly belong to the category
NOUNS.

Figure 2: Correlation coefficients between the different
signatures and and Children’s AoA (C) across three
datasets: Childes, BabyLM, and Unified.

6.1 Case studies

We perform several case studies by inspecting the
learning trajectories and AoA scores for humans
and each distributional signature from §3. We
analyze the trajectories and AoA scores for LMs
trained on the Unified dataset for a sample of 8
words: two FUNCTION WORDS, two NOUNS, two
ADJECTIVES, and two VERBS. For each category,
one word is chosen from the 10 most and 10 least
frequent (with respect to the Unified dataset).

Fig. 1 shows the trajectories for these words,
and Table A5 gives the AoA scores. For most
signatures, we observe that the higher-frequency
word from a category has an earlier AoA than the
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corresponding lower-frequency word. We also
observe that most signatures yield a wide range of
AoA scores, but others—particularly σ̂−—show
very similar (and late) AoAs for all words we
inspect. Table A6 shows the first and last learned
words for each signature. Generally, we find that
high-frequency words and function words are
learned first.

6.2 Convergence behavior

As we rely on convergence to extract AoA scores,
we now examine how different signatures converge.
Fig. 1 shows that the shape of the learning trajec-
tories varies between signatures. Within a given
signature, trajectory shapes are internally consis-
tent to varying degrees. As expected, the reference
signatures are mostly monotonic decreasing, in-
dicating that the LMs’ learned word distributions
become closer to ground truth. Furthermore, for
the corpus-based signatures, σ̂+ trajectories are de-
creasing, and σ̂− are increasing.9 On the other
hand, the intrinsic signatures and σ̂± are not con-
sistently increasing or decreasing.

Fig. A4 show how many words failed to con-
verge under different methodologies. We find
the vast majority of trajectories converge with
ϵ = 0.15. For lower values of ϵ, we see as many
as half of all words’ trajectories failing to converge
for the CHILDES dataset. However, with the larger
datasets BabyLM and Unified, we see high rates
of convergence across the board. Finally, it is the
intrinsic signatures and σ̂± that show the lowest
rates of convergence. As discussed above, these
are precisely the same signatures that do not have
an internally consistent shape.

Finally, we consider whether the convergence
and thresholding approaches to extracting AoAs
give similar results. We compute the AoA scores
for a given signature using a range of values of ϵ.
Then, the figures in App. I show correlations for
each pair of thresholds. With a few exceptions for
extreme values, different thresholds still yield AoA
scores that are highly correlated. Therefore, in all
our results (including those discussed above) we
apply an intermediate value of ϵ = 0.07.

9One caveat: for the first few training steps, the trajectory
sometimes goes in the other direction. Chang and Bergen
(2022) observed this phenomenon, showing that the learned
distribution approximates a uniform distribution initially fol-
lowed by the unigram distribution. After this point, the trajec-
tories are largely monotonic.

6.3 Comparing Signatures
Another important question is whether different
signatures give similar AoA scores to each other.
App. J shows the correlation matrix of AoA scores
for each signature. First, the correlations are all no-
tably higher for LMs trained on the Unified dataset.
Together with the finding that convergence rates
are higher for this dataset, this supports the conclu-
sion that AoA scores become more consistent as
training time increases. We find that most pairs of
signatures are weakly or negatively correlated, with
a few exceptions. In general, the various positive
signatures (σ̂+, σ̂I+, σ̂R+) have relatively strong
correlations. Across all datasets, the most strongly
correlated pair is σ̂+ and σ̂R+. The negative signa-
tures, but σ̂I−, have weak correlations with other
signatures, except for the pair σ̂−, σ̂± which have
very similar estimators.

7 Human vs. LM Learning Trajectories

We now examine the similarities and differences
between word learning in LMs and humans.

7.1 Comparing Human and LM AoAs

We begin simply by measuring the Pearson
correlation between human AoAs and the LM
AoAs from each signature. These values are
plotted in Fig. 2. Overall, we see very weak or
negative correlations. We find that the signature
that correlates most changes depending on the
datasets, but no correlation exceeds 0.31 (both
positive and negative). The strongest positive
correlations are from BabyLM for σ̂I± and σ̂R−,
while the strongest negative correlation are from
Unified and BabyLM for the σ̂I− signature.

7.2 Predicting AoAs from Features
We now examine which factors predict human and
LM AoAs, and compare whether these factors have
similar effects. Braginsky et al. (2016) identify sev-
eral interpretable features that predict human AoAs.
Chang and Bergen (2022) previously fit linear mod-
els to predict LM AoAs using these features. We
extend this analysis to our set of signatures.

Specifically, we take each the AoA scores from
children and from each signature as our depen-
dent variable, and additionally consider the fol-
lowing predictors10 that Braginsky et al. (2016)

10The outcomes of regressions using single predictors can
be misleading due to correlations among the predictors. There-
fore, regressions with multiple predictors have been conducted
as shown in the last two columns of Table 2.
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Metadata Single-Predictor Multi-Predictor
AoA type #words Log freq. Conc. #chars MLU Lex. cat. Full Full \ Log freq.

Children 262 0.004 0.26 -0.003 0.032 0.20 0.417 0.363
σ̂+ 262 0.614 0.298 0.135 0.072 0.304 0.616 0.392
σ̂− 251 0.063 0.012 0.023 0.0 0.047 0.083 0.065
σ̂± 245 0.542 0.265 0.142 0.04 0.294 0.546 0.379
σ̂I+ 215 0.4 0.274 0.107 0.162 0.201 0.463 0.382
σ̂I− 197 0.234 0.168 0.028 0.035 0.126 0.256 0.179
σ̂I± 201 0.052 0.012 0.005 0.006 0.05 0.063 0.05
σ̂R+ 262 0.572 0.295 0.118 0.088 0.296 0.582 0.377
σ̂R− 262 0.013 0.0 0.001 0.007 0.003 0.033 0.013
σ̂R± 256 0.292 0.159 0.083 0.04 0.122 0.3 0.2

Table 2: Summary of model results for Child AoA and LMs trained on the Unified dataset. Note: lexical category
does not contain the category OTHER which includes words that could be assigned to NOUNS, PREDICATES or
FUNCTION WORDS.

studied: (i) log frequency with respect to each
LM’s training dataset for LMs and with respect
to CHILDES for children, (ii) number of charac-
ters (iii) concreteness judgments, collected from
human subjects by Brysbaert et al. (2014), that
indicate the extent to which a word is concrete,
measured on a scale from 1 (very abstract) to 5
(very concrete), (iv) mean length of utterances
(MLU) in CHILDES that contain the word for chil-
dren and with respect to each LM’s training dataset
for LMs, and (v) lexical category NOUN, PREDI-
CATE, FUNCTION WORD, and OTHER, annotated
by Frank et al. (2017, 2021).

Do similar factors influence LMs and Children
AoAs? Regressions for children and for LMs
trained on Unified are given in Table 2. For chil-
dren, the adjusted R2 with all features reaches
0.417. The strongest single predictors of children’s
AoA are concreteness and lexical category. Log
frequency is a notably weak predictor on its own,
though it does add meaningful predictive power
when added to a model including all other features.
These results largely reproduce those of (Bragin-
sky et al., 2016) and Chang and Bergen (2022),
the latter of whom reports an adjusted R2 of 0.43
for predicting child AoA from all features using a
larger vocabulary of 571 words.

When it comes to predicting LMs’ AoA, we
identify two main patterns: First, the signatures
σ̂I± and σ̂− exhibit negligible relationships with
any of the predictors. Second, among the other
signatures, log frequency is consistently the most

predictive factor, similar to the findings of Chang
and Bergen (2022). Predictors concreteness and
lexical category are the next most predictive factors.
The figures in App. G show scatterplots of different
AoAs versus each of the predictors. For brevity,
we discuss results on the Unified dataset: For
all the signatures and datasets, language models
(LMs) demonstrate opposite behavior regarding
the effects of log frequency and concreteness on
children, with more frequent words having a lower
AoA. While children tend to acquire concrete
words earlier, language models seem to struggle
more with processing concrete words and perform
better with abstract ones. Moreover, while children
do not display a significant correlation with number
of characters, most signatures reveal positive cor-
relations with it. The exceptions are σ̂R− and σ̂I±
(BabyLM and CHILDES), which show slightly
negative correlations. Lastly, MLU exhibits a sim-
ilar pattern in both children and language models.

Does more developmentally plausible training
data result in more human-like learning pat-
terns? From Fig. 2, we can see that the mod-
els trained on the BabyLM tend to have the most
human-like learning trajectories, according to some
signatures (though, as stated above, LM trajectories
are far from human-like across the board). This is
surprising given that CHILDES, which comes from
discourses between caregivers and young children,
is the data most closely resembling the input to
the young children studied in Wordbank. However,
since all three datasets differ greatly in size, we
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cannot determine whether this result is due to data
domain or dataset size. By analyzing Table A8, we
find that there is a positive effect of the training set
size on the predictability of AoA. We speculate that
this may explain why Chang and Bergen (2022),
who trained models on much larger datasets than
ours, reported higher predictability for model AoA
scores (for σ̂+). We also note that in the CHILDES
dataset, log frequency is not significantly more pre-
dictive than other factors, in contrast with other
datasets. Overall, the results do not exhibit any
notable human-like patterns.

8 Discussion and Conclusion

Our main objective was to explore more fully
the space of distributional tests of word learning.
We showed that the distributional test adopted by
Chang and Bergen (2022) and Portelance et al.
(2023) can be viewed as an estimator of a more
general distributional signature. This insight also
enabled us to define a larger family of signatures
that follow a clear typology. However, the question
remains, which of these evaluations should be the
focus of researchers interested in studying word
learning in LMs? One of our main findings in §6.3
is that many of these signatures are complementary.
This is true with respect to children’s AoAs as well
as in comparison to each other. Arguably, consid-
ering both positive and negative contexts gives a
more complete picture of the LM’s distributional
knowledge, and comparing the LM’s distribution
against an LLM allows the signature to better re-
flect the gradience of the ground truth distribution,
which is not observable. Nonetheless, each signa-
ture we propose has a clear interpretation and may
be useful for specific applications, though usable
AoA scores cannot always be extracted.

In §7 we found that we could not predict
children’s AoAs well from any metric of model
AoA. This result might be somewhat surprising in
light of Portelance et al.’s (2023) finding that LM
surprisal improves predictions of children’s AoAs.
However, we note that that work uses σ̂+ at the
end of training as a predictor AoA, rather than the
AoA of the model under that signature. Our results
do further corroborate Chang and Bergen’s (2022)
conclusions on this question, and significantly
expand them to a wider variety of signatures. They
also add to a growing body of work finding specific
differences in the language learning patterns of
humans and LMs in other domains (e.g., Evanson

et al., 2023; Constantinescu et al., 2024). On the
other hand, Zhuang et al. (2024b,a) show that mul-
timodal LMs can show more human-like learning
trajectories and also introduce a novel training
objective that further improves human-likeness.

Future work should apply our distributional tests
to these and other potentially more human-like
training procedures. Besides learning in a world
grounded in sensory experience, children also learn
through interaction both with the physical world
and with other agents (Clark, 2018; Nikolaus and
Fourtassi, 2023). Moreover, children, unlike LMs,
have constraints on production, going through
one-word and two-word utterance phases (Bloom,
1970). These factors no doubt influences the kinds
of words children use early in development and
may account for the precedence of concrete words.
There are only a few examples of training regimes
for LMs inspired by interaction (Lazaridou et al.,
2020; Nikolaus and Fourtassi, 2021b; Ma et al.,
2024). Furthermore, the reliance on stochastic gra-
dient descent and cross-entropy loss likely skew
learning trajectories in LMs in ways that are not
entirely human-like. There are many opportuni-
ties for exploring more human-like LM training,
and we expect word learning will be an important
evaluation of human-likeness as these are explored.

Having better mapped out the space of evalua-
tions for lexical knowledge, our work paves the
way for comparing learning trajectories of lan-
guage models and humans. Our findings provide
strong empirical support that there are large differ-
ences between how these language learners develop
throughout learning and draw attention to the fact
that there is significant work to be done to explore
pretraining methods and datasets that result in more
developmentally plausible language models.

9 Limitations

Our study has several limitations. First, while
we are interested in the possibility that LMs can
be used as cognitive models and we attempt to
use developmentally plausible data, our LMs are
not trained in a way that is maximally similar to
how humans learn. They lack exposure to speech,
grounding, and interaction with other agents, all of
which may have a large influence on word learning.
Second, while our proposed true and reference sig-
natures are weighted by a distribution −→pκ, we only
estimate this distribution using Monte Carlo esti-
mation. Future work should explore whether bet-
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ter estimators, for example based on LLMs, yield
qualitatively different results. Third, the specifics
of our findings could be sensitive to our training
setup. Future work test whether different pretrain-
ing pipelines give qualitatively different results. Fi-
nally, our study focuses on extracting AoAs from
learning trajectories, but AoA is just one statistic
that can be extracted from the learning trajectory.
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A Estimation

We now discuss how to estimate the various distributional signatures we introduced in §3.

A.1 An Intrinsic Metric
We develop an intrinsic metric, i.e., a metric that does not relay, in expectation, on the true language model
p. Thus, we consider the following information-theoretic quantity that resembles Eq. (6), but where the
expectation is taken with respect to the model itself:

σI+
def
= −

∑
c∈Σ∗

−→qκ(c | w) log−→q (w | c). (1)

In contrast to Chang and Bergen’s (2022) distribution signature, Eq. (1) is not grounded in an external
language model. Thus, it measures a notion of knowledge internal to the language model itself. We can
also, by analogy to Eq. (9), define an intrinsic metric that considers just negative contexts

σI−
def
= −

∑
c∈Σ∗

−→qκ(c | ¬w) log−→q (w | c) (2)

and one that considers all contexts

σI±
def
= −

∑
c∈Σ∗

−→qκ(c) log−→q (w | c). (3)

A.2 A Practical Estimator
We now discuss a scheme to estimate Eq. (1). First, we note that, by Bayes’ rule, we have

−→qκ(c | w) =
−→q (w | c)−→q (c)∑

c∈Σ∗
−→q (w | c)−→q (c)

. (4)

Instead, we consider the following approximation. Given a bag of contexts C = Hc(m)IMm=1 that proceed a
word w, we construct the following empirical approximation

q̃κ(c | w) =
1{c ∈ C}−→q (w | c)−→qκ(c)∑M
m=1

−→q (w | c(m))−→qκ(c(m))
. (5)

Plugging Eq. (5) into Eq. (1), we arrive at

σ̂I+
def
= −

M∑
m=1

q̃κ(c
(m) | w) log−→q (w | c(m)),

In the limiting case, i.e., when C includes all of Σ∗, we have σ̂I+ → σI+. Note that Eq. (6) is not a
standard Monte Carlo estimator as the contexts c(m) may not have been drawn from −→qκ(· | w), but it
is still consistent. An analogous estimator can be derived for Eq. (2) and Eq. (3).

B σR+,σR− and σR± are distance metrics

The reference signatures as introduced in §3 can be easily shown to be distance metrics.
Let xc

def
= log−→pκ(c | w) and yc

def
= log−→r (w | c), we can rewrite the signatures as follows:

σR+ =
∑
c∈Σ∗

−→pκ(c | w) |xc − yc|

σR− =
∑
c∈Σ∗

−→pκ(c | ¬w) |xc − yc|

σR± =
∑
c∈Σ∗

−→pκ(c) |xc − yc|

Since −→pκ(c | w), −→pκ(c | ¬w) and −→pκ(c) are all greater than zero, the expressions above represent
weighted Manhattan distances, dmonstrating that they are indeed distance metrics.
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C Training Details

Training was conducted in parallel across 8 GPUs, with gradient accumulation steps set to 16 and a batch
size per device of 4. As a result, our model was trained with an effective batch size of 512.

Hyperparameter Value

# of heads 12
# of layers 12
learning rate 7e-4
learning rate scheduler linear
precision fp16

Table A3: Training Hyperparameters for
GPT-2

Dataset 42 123 28053

Childes 2,800 2,800 2,600
BabyLM 4800 7200 6000
Childes 30,000 30,000 30,000

Table A4: Final steps for the model
trained with seeds 42, 123 and 28053.

We saved the checkpoints used for our analysis at increasing intervals throughout the training:

• Every 50 steps for steps ∈ (0, 1, 000]

• Every 200 steps for steps ∈ (1, 000, 10, 000]

• Every 500 steps for steps ∈ (10, 000, 30, 000]

Figure A3: Validation losses for models trained on Unified, BabyLM, and CHILDES. The curves show the necessity
for an earlier stopping step for seed 42 (blue), 123 (orange), and 28053 (green).

D Extract through convergence

When it comes to complex signatures that are nonmonotonic or do not have consistently shaped trajectories,
one way to extract AoA is to find the convergence point. Let σ(w, t) the value that the signature of the
word w assumes at time-step t.

Fix a tolerance parameter ϵ > 0. Then, the age of acquisition AoA is

AoA = α (σ,w) = argmin
t∈{1,...,T}

(
max

s,s′∈{t,...,T}

∣∣σ(w, s)− σ(w, s′)
∣∣ < ϵ

)
(6)

This definition mirrors the definition of the convergence of a Cauchy sequence. However, because T is
finite, for small enough ϵ, we do not, in general, observe true convergence in the analytic sense. Thus, the
tolerance parameter ϵ is best viewed as a hyperparamter, and our findings are dependent on the choice of ϵ.
However, given that nearly all learning algorithms are analyzed by letting T → ∞, there is a sense in
which our definition of AoA is well-founded. Specifically, if we assume the convergence of the learning
algorithm as T → ∞ implies the convergence of σ, then, for every ϵ > 0, there exists a number of epochs
such that we will achieve α (σ,w).
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To address the shape instability, we decided to smooth the curves with a moving average. Once the
denoised signal is obtained, we then apply the previously mentioned convergence method to extract AoA
from our signatures.

Fig. A4 shows the percentage of words that did not reach convergence for various ϵ values. A word is
marked as non-converged if σ failed to converge for even a single seed.

Figure A4: Percentage of non-converged words across various ϵ.

E Case studies’ AoAs

Table A5 presents the AoA for each word illustrated in Fig. 1. The AoA values for the signatures were
obtained from the model trained on the Unified dataset, using seed 42 and extracted using ϵ = 0.07.

Word Children σ̂+ σ̂− σ̂± σ̂I+ σ̂I− σ̂I± σ̂R+ σ̂R− σ̂R±

the 27.79 0.45 0.94 0.88 0.49 0.89 0.89 0.47 0.80 0.57
off 22.77 0.68 0.91 0.82 0.93 0.95 0.96 0.67 0.89 0.67
water 20.00 0.69 0.91 0.89 not conv. not conv. 0.92 0.68 0.66 0.67
puzzle 24.79 0.87 0.91 0.92 0.95 0.91 0.95 0.76 0.82 0.64
good 24.54 0.57 0.88 0.45 0.43 0.67 0.94 0.57 0.83 0.59
orange 23.26 0.84 0.92 0.96 not conv. not conv. 0.92 0.80 0.85 0.64
go 23.33 0.47 0.89 0.59 0.42 0.77 0.92 0.52 0.79 0.54
climb 26.04 0.73 0.92 0.93 0.96 not conv. 0.93 0.75 0.59 0.65

Table A5: AoA for words in Fig. 1.
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F First and Last Acquired Words

Table A6 reports the first 10 and the last 10 words that were acquired according to each signature. The
words refers to the model trained on the Unified dataset, using seed 42 and extracted using ϵ = 0.07.

σ First acquired words Last acquired words

σ̂+ not, do, you, have, there, can, this, to, that, am yes, washing, brush, toy, cow, clock, wash, puzzle, flower, egg

σ̂− all, so, a, he, can, this, there, on, out, for red, paint, the, dinner, dry, milk, pretty, feed, cup, blue

σ̂± under, so, like, for, all, a, at, on, out, here chocolate, elephant, doll, teacher, truck, gas, washing, kitchen,
lips, basket

σ̂I+ need, can, have, gonna, this, is, you, what, not, wanna green, swim, touch, sleep, broken, dirty, present, park, ear, frog

σ̂I− have, a, take, that, so, can, here, all, need, now rock, cake, money, bread, wash, cup, knife, build, teacher, sky

σ̂I± can, am, need, this, a, that, there, stairs, look, first clock, bedroom, coat, park, your, thank, sheep, away, walk, rain

σ̂R+ make, man, not, have, this, here, little, do, to, put toy, yes, brush, flower, egg, plate, camera, star, block, washing

σ̂R− truck, write, say, block, rock, hard, big, a, friend, knife arm, apple, read, present, star, buy, snow, gas, brush, slow

σ̂R± a, not, am, man, have, on, can, do, make, so yes, apple, train, empty, frog, basket, toy, brush, draw, gonna

Table A6: First and last acquired words for each signature.

G AoA vs Predictors

In the following subsections, we show how Log Frequency, MLU, Number of Characters, and Concreteness
each influence σ’s AoA across different datasets. Each AoA value presented in the plots represents the
average AoA across multiple seeds, extracted with ϵ = 0.07. Only words that achieved convergence across
all seeds were included in the analysis.

G.1 CHILDES
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G.2 BabyLM
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G.3 Unified
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H Regression analysis

full <- paste(predictors , collapse = "+")
reduced <- paste(original_predictors[-1], collapse = "+")
vif_values <- vif(lm(AoA ~ full , data = data))
if (max(vif_values) > 5){

print("Multicollinearity␣detected\n")
}
predictors <- c("log_frequency", "concreteness", "n_chars", "mlu", "lexical_class")
for (i in 1:length(predictors)) {

formula <- paste("AoA␣~", predictors [[i]])
model <- lm(formula , data = data)
cat(paste(predictors [[i]], "Adjust␣Rsquared:", summary(model)$adj.r.squared))

}
m_full <- lm(AoA ~ full , data = data)
m_reduced <- lm(AoA ~ reduced , data = data)
cat("Full␣model␣Adjust␣Rsquared:", summary(m_full)$adj.r.squared
cat("Reduced␣model␣Adjust␣Rsquared:", summary(m_reduced)$adj.r.squared

Listing 1: simplified R code for the regression analysis.

In the following regressions we denote Log Frequency as LF, Concreteness as Co, Number of Characters
as NC, Mean Length of Utterances as MLU, and Lexical Category as LC. No VIF value has exceeded 5,
indicating no multicollinearity among the predictors.

H.1 Children regressions

Model Predictor Estimate p-value Adj. R2

LF Intercept 0.723676 < 2e-16 *** 0.004
Log Frequency 0.011405 0.162

C Intercept 1.003250 < 2e-16 *** 0.2575
Concreteness -0.096730 < 2e-16 ***

NC Intercept 0.615790 < 2e-16 *** -0.003
Number of Characters 0.004372 0.661

MLU Intercept 0.38715 1.76e-6 *** 0.03233
MLU 0.03268 1.7e-3 **

LC Function Words 0.75029 < 2e-16 *** 0.2012
Nouns -0.2284 6.67e-12 ***

Predicates -0.06586 0.0337 *

Full Log Frequency -0.047086 6.37e-07 *** 0.4177
Number of Characters 0.025407 0.00342 **

Concreteness -0.091746 3.51e-10 ***
MLU 0.046211 6.70e-08 ***

Function Words 0.26867 0.00454 **
Nouns -0.193857 1.72e-05 ***

Predicates -0.084683 0.01456 *

Full \ LF Number of Characters 0.038773 5.50e-07 *** 0.3625
Concreteness -0.073379 4.91e-07 ***

MLU 0.043550 9.72e-07 ***
Function Words -0.042864 5.50e-07 ***

Nouns -0.115122 0.0085 **
Predicates -0.001887 0.9527

Table A7: Children regressions. For each model the Adjusted R2, the estimate for the predictors and the p-value for
predictor significance.
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H.2 Signatures regressions
The table below reports the Adjusted R2 values for each predictor across all datasets and signatures, as
introduced in App. G. Consistent with previous analyses, the AoA values were computed using a ϵ =
0.07. The table shows the number of words included in the regression analysis, counting only those that
remained after outlier removal and successfully achieved convergence across all three seeds. Among all
the signatures, σ̂+ is the one that demonstrates the strongest predictive power across nearly all predictors.

Dataset σ #words LF Co NC MLU LC Full Full \ LF

CHILDES σ̂+ 222 0.365 0.106 0.065 0.004 0.162 0.376 0.192
σ̂− 141 0.108 0.032 0.025 -0.001 0.037 0.105 0.046
σ̂± 124 0.236 0.074 0.06 0.012 0.081 0.252 0.129
σ̂I+ 103 0.173 0.110 0.035 0.014 0.068 0.193 0.125
σ̂I− 77 0.115 -0.003 0.039 0.003 0.073 0.132 0.088
σ̂I± 163 -0.001 -0.002 -0.001 -0.0 -0.002 -0.006 -0.005
σ̂R+ 210 0.412 0.146 0.069 0.002 0.199 0.422 0.232
σ̂R− 229 0.006 -0.0 0.013 0.006 0.011 0.048 0.028
σ̂R± 228 0.182 0.103 0.078 0.016 0.093 0.216 0.162

BabyLM σ̂+ 257 0.48 0.168 0.092 0.026 0.217 0.483 0.278
σ̂− 243 0.124 0.052 0.029 0.014 0.083 0.125 0.1
σ̂± 162 0.413 0.222 0.091 -0.001 0.29 0.433 0.323
σ̂I+ 130 0.383 0.224 0.179 0.107 0.221 0.421 0.363
σ̂I− 80 0.288 0.2 0.103 0.027 0.135 0.297 0.229
σ̂I± 209 0.056 0.066 0.016 0.004 0.063 0.085 0.08
σ̂R+ 253 0.407 0.204 0.082 0.057 0.188 0.425 0.291
σ̂R− 254 0.036 0.061 -0.0 -0.001 0.072 0.079 0.079
σ̂R± 257 0.087 0.023 0.025 0.011 0.023 0.097 0.06

Unified σ̂+ 262 0.614 0.298 0.135 0.072 0.304 0.616 0.392
σ̂− 251 0.063 0.012 0.023 0.0 0.047 0.083 0.065
σ̂± 245 0.542 0.265 0.142 0.04 0.294 0.546 0.379
σ̂I+ 215 0.4 0.274 0.107 0.162 0.201 0.463 0.382
σ̂I− 197 0.234 0.168 0.028 0.035 0.126 0.256 0.179
σ̂I± 201 0.052 0.012 0.005 0.006 0.05 0.063 0.05
σ̂R+ 262 0.572 0.295 0.118 0.088 0.296 0.582 0.377
σ̂R− 262 0.013 0.0 0.001 0.007 0.003 0.033 0.013
σ̂R± 256 0.292 0.159 0.083 0.04 0.122 0.3 0.2

Table A8: Table reporting the Adj. R2 for the linear models predicting LM’s AoA.
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I Thresholds’ Correlation

The Pearson correlations reported in Fig. A5 illustrates how the AoA values extracted using varying
ϵ correlate. This analysis aims to determine whether the choice of ϵ significantly impacts the results.
As discussed in §6.2, with few exceptions, the results across different ϵ values show high correlation.
Therefore, our analysis will remain consistent regardless of the choice of ϵ.

Figure A5: For each σ, we present a Pearson correlation coefficient matrix comparing different ϵ. Warmer colors
indicate stronger positive correlations, cooler color indicate stronger negative correlations.
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J Signatures’ AoA Correlation

The figures in this section show how each signature’s AoA values correlate with one another across each
model trained with different datasets. As a result, the dataset itself influences the correlation patterns
among the different signatures. For example, the Unified dataset displays only positive correlations,
whereas Childes and BabyLM datasets exhibit negative correlations for σ̂I± and σ̂R−. The AoA values
were extracted using ϵ = 0.07.
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