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Abstract

Humans appear to have a critical period (CP)
for language acquisition: Second language
(L2) acquisition becomes harder after early
childhood, and ceasing exposure to a first
language (L1) after this period (but not
before) typically does not lead to substantial
loss of L1 proficiency. It is unknown
whether these CP effects result from
innately determined brain maturation or as a
stabilization of neural connections naturally
induced by experience. In this study, we use
language models (LMs) to test the extent
to which these phenomena are peculiar to
humans, or shared by a broader class of lan-
guage learners. We vary the age of exposure
by training LMs on language pairs in various
experimental conditions, and find that LMs,
which lack any direct analog to innate matu-
rational stages, do not show CP effects when
the age of exposure of L2 is delayed. Our
results contradict the claim that CP effects
are an inevitable result of statistical learning,
and they are consistent with an innate mech-
anism for CP effects. We show that we can
reverse-engineer the CP by introducing a reg-
ularizer partway through training to simulate
a maturational decrease in plasticity. All in
all, our results suggest that L1 learning on its
own may not be enough to induce a CP, and
additional engineering is necessary to make
language models more cognitively plausible.

1 Introduction

The tension between nature and nurture is central
to questions surrounding how humans acquire
language. The Critical Period (CP) for language
acquisition is no exception. Around the onset of
adolescence, humans exhibit a loss in ability to ac-
quire a second language through immersion and a
tendency not to forget their first language under de-
privation (Penfield and Roberts, 1959; Lenneberg,
1967; Johnson and Newport, 1989; Pallier et al.,

2003). Scholars of human development have long
debated whether these phenomena are predeter-
mined by innately encoded developmental changes
in the maturing brain (Penfield, 1965; Chomsky,
1965; Pinker, 1994), or natural consequences of
increased experience that any typical statistical
learner would be subject to (Elman et al., 1996;
Seidenberg and Zevin, 2006; Thiessen et al., 2016).

Until recently, it was difficult to differentiate
these two hypotheses; as we could only observe one
kind of statistical learner (i.e., humans), we could
not identify which properties of its learning process
were responsible for its behavior. Recent improve-
ment in neural language modeling upends this state
of affairs (Warstadt and Bowman, 2022). Lan-
guage Models (LMs) can learn to simulate many
native-like grammatical judgments (Warstadt et al.,
2020; Zhang et al., 2021; Hu et al., 2020)—long
regarded as one of the main behavioral measures of
native speaker knowledge (Chomsky, 1957; John-
son and Newport, 1989)—and, like humans, they
acquire this knowledge from unstructured input
without the need for negative evidence. However,
their learning algorithm and structure differ from
those of humans in a number of ways. LMs can
thus provide additional information about which
phenomena are likely to be typical of general lan-
guage learners, and which are peculiar to humans.

In this work, we use language models to study
the CP for language acquisition, focusing on
second language acquisition and first language
attrition. Our experiments test for CP effects1 in
LMs by training them from scratch on bilingual
data, varying only the age of exposure to L2. We
test whether, like humans, LMs learn L2 more
easily when exposed to it simultaneously with L1

from the beginning of training, rather than when

1The term critical period is sometimes used to refer to a
specific biological construct. For clarity, we use the term CP
effects to refer to the characteristic observable effects of age
of exposure on L1 and L2 performance.
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Figure 1: A visualization of the training conditions, using L1 = de, L2 = en, S = 600M, E = 6.

exposed to it only after learning L1. Similarly, we
test whether they fail to forget L1 after extensive
training on it. Experimentally, we find that LMs
are unlike humans in both respects.2 Thus, our
results contradict the view that CP effects are an
expected consequence of statistical learning, and
they are consistent with (but only provide weak
evidence for) the view that the CP in humans is a
biologically programmed developmental stage.

The benefits of studying the CP in neural mod-
els, however, go beyond just discerning the two hy-
potheses above. If LMs do differ from humans, it
may be useful to attempt to reverse-engineer those
learning properties exhibited by humans (Dupoux,
2016). Furthermore, minimizing differences be-
tween LMs and humans is a necessary step in en-
abling their use more broadly as models of hu-
man language acquisition (Warstadt and Bowman,
2022). Thus, we also attempt to reverse-engineer
a CP by simulating a loss of neural plasticity using
Elastic Weight Consolidation (EWC; Kirkpatrick
et al., 2017), a Bayesian regularizer used in ma-
chine learning to mitigate catastrophic forgetting.
Our experiments show that both of the CP effects
emerge in tandem when the model’s plasticity is ex-
plicitly controlled in this way. Our findings demon-
strate the utility of LMs as tools for theories about

2We note that our results thus align with the well-known
fact that language models: (i) are prone to catastrophic forget-
ting; and (ii) are good at transfer learning. Our experiments,
though, support the novel conclusion that transfer performance
(training in L1 followed by L2) leads to similar or better results
than jointly training on both languages.

human language acquisition, and they suggest a
path forward to making LMs more developmentally
plausible models of human language acquisition.

2 Background: The Critical Period

The proposition that there is a critical period for
language learning has long been prominent in lan-
guage acquisition research (Penfield and Roberts,
1959; Lenneberg, 1967). Discussions around the
CP, however, typically cluster a number of related
observations; these must be teased apart in order to
be properly understood (Singleton, 2005; Mayberry
and Kluender, 2018). The critical period can be
divided into 3 main phenomena, namely: a CP for
L1 acquisition, a CP for L2 acquisition, and a CP
for L1 attrition. We focus on the latter two here.3

2.1 Critical Period for L2 Acquisition

CP effects for L2 acquisition consist of greater
difficulty in learning a second language and worse
learning outcomes as the age of exposure increases.
As humans vary greatly in the beginning of L2

exposure, this is perhaps the most well-known
of the CP phenomena. The effects of age of
exposure on phonetics and phonology (i.e., one’s
accent) are part of folk knowledge and were a
key piece of evidence in the first works to propose

3Strong evidence of a CP for L1 acquisition has been
demonstrated in late L1 learners from the deaf community
(Mayberry and Fischer, 1989; Newport, 1990). However, as
simulating late L1 exposure requires training on non-linguistic
data, we consider it beyond the scope of this work.



a neurological mechanism for these (Lenneberg,
1967). Numerous studies also show that age of
exposure correlates with worse L2 performance
on morphological and syntactic acceptability
judgment tasks (Johnson and Newport, 1989;
Hartshorne et al., 2018). While the exact nature
and reliability of these effects has been questioned
at times (Ioup et al., 1994), the existence of
age-of-exposure effects is generally accepted. We
refer the reader to several thorough reviews of the
relevant evidence (Singleton, 2005; Thiessen et al.,
2016; Mayberry and Kluender, 2018).

In the realm of computational learners, no prior
work has tested this CP in a controlled manner. In
a more general form, however, L2 acquisition has
been studied in depth (Dufter and Schütze, 2020;
Chen et al., 2023, inter alia). Most related to our
work, Oba et al. (2023) trained a number of lan-
guage models on an L1 and then fine-tuned these
models on both L1 and L2; they find that, unlike
humans, this two-step training improves LMs’ L2

performance. This already suggests that LMs may
not show CP effects for L2 learning. However,
they do make L2 learning relatively easier by fine-
tuning their models on L1 and L2 simultaneously
within the same bidirectional transformer context,
which we contend is not cognitively plausible.

Beyond Oba et al.’s (2023) study, weak evidence
against the existence of a CP for L2 in neural net-
works is suggested by a large body of work on
transfer learning which fine-tunes pretrained neural
networks to perform new tasks (e.g., Devlin et al.,
2019; Liu et al., 2019; Driess et al., 2023). These
studies indicate that a neural model can achieve su-
perior performance on a fine-tuned task compared
to training on it from scratch. However, these stud-
ies do not manipulate age-of-exposure while con-
trolling for the total amount of input, and their main
focus is on tasks other than language modeling it-
self, such as classification.

2.2 Critical Period for L1 Attrition

The CP for L1 attrition refers to a loss of profi-
ciency in L1 due to a lack of exposure to it. This
phenomenon is largely constrained to earlier ages
(Pallier, 2007), as adults who emigrate from their
L1 community do not typically forget their L1 en-
tirely. However, profound attrition is possible if L1

exposure ceases during childhood. For example,
Pallier et al. (2003) studied Korean-born adoptees
in France who had no recognition of their L1, de-

spite living in Korea for as long as eight years.
In the computational domain, language attrition

relates to another large body of work in life-long
and continual learning. In short, a large number
of works have shown that neural networks are
prone to catastrophic forgetting (McCloskey and
Cohen, 1989; French, 1999), losing most of their
proficiency in their original training domain when
fine-tuned on another. Continual learning mitigates
catastrophic forgetting through the use of adapters
(Houlsby et al., 2019; Pfeiffer et al., 2020),
regularizers (Kirkpatrick et al., 2017; Pan et al.,
2020), or further training in the original domain.

2.3 Theories

Critical period effects in humans are typically in-
terpreted as evidence that neural plasticity in the
language centers of the brain decreases as the brain
matures (Newport, 1990). However, the cause of
this decrease in plasticity is a matter of debate, with
much of the divergence among theories stemming
from whether they emphasize innate or experien-
tial mechanisms as responsible for this decrease.4

Innate accounts of the CP argue that this loss
in plasticity is driven by properties which are
specific to how humans acquire language. Some
of these accounts are based on the hypothesis that
children—but not adults—are equipped with a
specialized language acquisition device such as
Universal Grammar (Chomsky, 1965; Newport,
1990). On this view, the CP occurs when Universal
Grammar is (wholly or partially) lost, displaced,
or dismantled as we age, which would explain
why adults struggle with language acquisition
(Chomsky, 1965, p. 207; Borer and Wexler, 1987;
Bley-Vroman et al., 1988; Schachter, 1988; Pinker,
1994, p. 294).5 Other innate accounts are not
language-specific, especially those with an explicit
neurobiological basis. For example, humans (and
other mammals; Paolicelli et al., 2011) go through
a phase of synaptic pruning peaking in late child-
hood and adolescence (Huttenlocher, 1979, 1990)

4With exceptions, most views are quite diverse and many
scholars advocate for a nuanced view with multiple causes
(e.g., Newport, 1990; Thiessen et al., 2016; Singleton, 2005).
Other explanations for CP involve social factors, such as a
decrease in willingness to experiment, in motivation to fit into
one’s community, or in the likelihood of being immersed in
the target language (Hartshorne et al., 2018).

5Child and adult language acquisition are seen as driven by
different mechanisms on this view (Thiessen et al., 2016), sup-
ported by evidence that general analytic ability predicts adult—
but not child—L2 learning outcomes (DeKeyser, 2000).



during which disused neuronal connections are
reduced (Hensch, 2005). Monolingual brains show
signs of more extensive pruning than bilingual ones
(Mechelli et al., 2004), suggesting that early in life
abundant synapses provide the necessary plasticity
to acquire a second language with ease, and that
later these synapses may be pruned if not yet
recruited (De Bot, 2006). Beyond synaptic pruning,
other neurobiological process such as myelination
(Pulvermüller and Schumann, 1994; Pujol et al.,
2006) and lateralization (Lenneberg, 1967) are
also correlated with a loss in plasticity as we age.6

By contrast, experiential accounts of the CP
argue that a loss in plasticity is a consequence of
learning itself (Munro, 1986; Elman et al., 1996,
p. 283; Ellis and Lambon Ralph, 2000; Zevin
and Seidenberg, 2002; Seidenberg and Zevin,
2006; Thiessen et al., 2016; Achille et al., 2019).
Early experiments on connectionist models found
that stages associated with human development
sometimes fall out naturally during the training
of low-bias neural networks (McClelland, 1989).
Connectionist word learning simulations found an
effect of age of acquisition on learning outcomes
(Ellis and Lambon Ralph, 2000; Zevin and
Seidenberg, 2002). Numerous scholars explain
this loss of plasticity—sometimes referred to as
entrenchment—as a natural consequence of the
training dynamics of networks that lead to conver-
gence (Munro, 1986; Elman et al., 1996; Ellis and
Lambon Ralph, 2000; Seidenberg and Zevin, 2006).
As Ellis and Lambon Ralph (2000, p. 1108) argue,
in a model with random weights (e.g., after initial-
ization) the activations of individual units tend to-
wards intermediate values, leading to large weight
changes, but as training proceeds, the units’ activa-
tions tend towards extreme values making them less
prone to change, even if the prediction loss is large.

3 The Role of LMs in Studying the CP

Computational models have the potential to be a
powerful tool for informing debates about language
acquisition, as they enable a degree of control
over the learning mechanism and environment
not possible with human subjects; their relevance
to questions about human learning, however, is
hampered by their numerous differences from

6Often, these processes have experiential correlates as
well, i.e., their outcomes are modulated by experiences during
development (Mechelli et al., 2004; Cheng et al., 2019).
This is consistent, however, with the timing and onset of the
process being biologically determined.

human learners (Warstadt and Bowman, 2022).
Nonetheless, there are some theoretical claims that
current LMs can provide strong or even conclusive
evidence about. Not surprisingly, these models are
increasingly being used to test theories of language
acquisition (McCoy et al., 2020; Lavechin et al.,
2021; Wilcox et al., 2023; Warstadt et al., 2023).
Language models can, for example, refute some
poverty of the stimulus claims by providing
existence proofs about language learnability (Clark
and Lappin, 2011, p. 30).

In general, theories of CP effects are rather di-
verse and nuanced. However, we can identify two
strong claims which are echoed in many of the ac-
counts above and about which LMs can provide
evidence: the strong innate claim and the strong
experiential claim.

Strong Innate Claim. Innate learning constraints
are necessary to explain critical period effects.

The strong innate claim is implicit in the argu-
ment that the mere existence of CP effects counts as
evidence in favor of an innate mechanism like Uni-
versal Grammar (see, e.g., Schachter, 1988). This
argument depends on the premise that a change in
learning ability as extreme as what is seen in L2

acquisition could not (or would be very unlikely to)
arise from a single domain-general learning mech-
anism. This premise, and thus the argument, is
simple to refute by finding a counterexample, that
is, an instance of a low-bias learner that does show
CP effects. Transformer-based LMs, while not bias-
free, have proven to be effective learners for vision
(Dosovitskiy et al., 2021), protein folding (Jumper
et al., 2021), and many other types of data, suggest-
ing that they are sufficiently domain-general to re-
fute strong innate claim if they do show CP effects.

Strong Experiential Claim. Critical period ef-
fects are a necessary consequence of successful
statistical learning.

The strong experiential claim has been argued
to follow from a mathematical understanding of
the training dynamics of connectionist networks
(Munro, 1986; Ellis and Lambon Ralph, 2000). Sei-
denberg and Zevin (2006) speak of a paradox of
success, whereby successful generalization creates
the conditions for a loss in plasticity. This claim is
similarly simple to refute, by finding a successful
connectionist learner that fails to show CP effects.

Studying the CP in LMs serves an additional
purpose for our understanding of human lan-



guage acquisition. Dupoux (2016) argues that
reverse-engineering properties of human language
acquisition can give insights into the mechanisms
behind those properties at the algorithmic or
implementational level (Marr and Poggio, 1976).
While we endorse this view, and do attempt to
reverse-engineer CP effects, our efforts are at
the computational level. The resulting models,
however, do more closely resemble human learners
in the relevant property, which makes results
obtained from them more likely to generalize to
humans (Warstadt and Bowman, 2022).

4 Research Questions and Methodology

To study the claims above, we now put forward two
research questions which we investigate with the
help of language models.

RQ 1. Can we find evidence of a critical period
for L2 learning in language models?

RQ 2. Can we find evidence of a critical period
for L1 attrition in language models?

These are the main questions that we want
to investigate, and on which we focus our
experiments. We analyse them by first training
LMs in various multilingual setups—while
altering the ages (epochs) at which L1 and L2

are acquired—and then evaluating our models
on L1 and L2. Importantly, we do not make any
modifications to the LMs’ architecture or learning
objectives in these experiments.

Beyond these main questions, we also explore
two other research question here.

RQ 3. Does reducing plasticity in language models
induce human-like critical period effects?

RQ 4. Are critical period effects in language mod-
els dependent on L1 and L2’s similarity?

Investigating RQ 3 serves a dual purpose. First,
it allows us to test whether the critical period ef-
fects associated with L2 acquisition and L1 attrition
arise in tandem as a result of a loss in plasticity,
or whether these phenomena can (at least in one
case) be decoupled. Second, if we are successful at
reverse engineering these CP effects, we obtain a
model that more closely resembles human learners
and that might be useful for future work. We test
this question by evaluating the linguistic perfor-
mance on both L1 and L2 while training a model
whose learning objective has an extra regularizer
which enforces a reduction in plasticity.

Similarly, RQ 4 also serves a dual purpose. First,
it informs us about the relationship between lan-
guage similarity and CP effects. Second, it im-
plicitly assesses how sensitive our results are to
a specific choice of language pair, providing us
with a notion of how robust our experiments are to
this choice. We test this question by performing
the above analysis in a number of language pairs
which differ in their similarity.

4.1 Training conditions
Our goal is to train a language model L from
scratch on pairs of languages (L1 and L2) while
manipulating two independent variables: (i) the
ages (epochs) of exposure to L1 and L2, and (ii)
the level of programmed plasticity. In this section
our focus will be on providing the methodology for
variable (i), whereas the methodology for variable
(ii) is left to be presented in Section 4.2.

The obvious way to manipulate age of acquisi-
tion in the case of language modeling is to alter the
training data schedule. As visualized in Fig. 1, we
consider five schedules, which we will refer to as
“training conditions” throughout the paper. Across
all conditions, the datasets remain unchanged (for
a given language pair) and the size of the training
data per language is kept consistent (we denote
this quantity by S). The total number of training
iterations per example, also known as epochs, is
also a constant number (we refer to this as E).
As a consequence, the amount of exposure to L1

and L2 is the same across conditions, with the
inevitable exceptions of the MONOLINGUAL and
SEQUENTIAL-INTERLEAVED conditions.

MONOLINGUAL. This condition simulates a
monolingual human learner exposed to only one
language during their lifetime. The simplest ap-
proach in this condition would be to just train L for
2 · E epochs on a monolingual dataset. However,
this would mean that L would be trained only on
half the number of tokens (S) compared to the other
conditions (2 · S). To account for this, we create a
second monolingual dataset of the same size and
train L on the two datasets in a sequential manner.

INTERLEAVED. This condition aims to replicate
a simultaneous bilingual human learner exposed
to two different languages from birth. It is also an
implementation of typical multitask learning. We
train L for a total of E epochs on an interleaved
bilingual dataset. Throughout training, L encoun-
ters batches of fixed size that alternate between L1



and L2. As the bilingual dataset is double in size
compared to the monolingual datasets, E epochs
provide the same amount of training steps per
language as with the other conditions.

SEQUENTIAL. This condition represents the ex-
perience of a late L2 learner who changes linguistic
communities, losing exposure to L1 entirely. It can
also be seen as a typical implementation of trans-
fer learning. In this condition, L is trained for E
epochs exclusively on L1, and then subsequently
trained for another E epochs on L2. The shift from
L1 to L2 occurs abruptly, with a complete halt in
L1 exposure rather than a gradual transition.

SEQUENTIAL-INTERLEAVED. This condition is
closely related to the previous sequential condition,
but recreates an experience more common among
human bilinguals where L1 exposure continues dur-
ing L2 acquisition. It is also an implementation of
one approach to continual learning. After the initial
stage of L1 learning, L is trained on L1 interleaved
with L2. We continue to use the same L1 dataset
from the initial training stage.

SEQUENTIAL-EWC. This condition attempts to
emulate in LMs an innate reduction in plasticity
like that proposed for humans. The L2 models
are trained from the same L1 checkpoints as for
the normal SEQUENTIAL condition, but with EWC
regularization added to the loss function. The re-
duction in plasticity is not progressive, but only
changes once, after L1 has been fully trained.

4.2 Enforcing Plasticity

There are several methods to simulate a compu-
tational reduction in plasticity in LMs. We have
chosen Elastic Weight Consolidation (Kirkpatrick
et al., 2017) due to its popularity and simplicity.
EWC introduces a Bayesian-inspired regulariza-
tion term on a LM’s loss partway through training;
this term penalizes deviations from a prior distri-
bution over the parameter space (defined in terms
of L1 training), simulating the end of the critical
period. The modified loss function is defined as

L(θ) = LL2(θ) + λ · REWC (θ) (1)

We introduce an additional hyperparameter λ ∈
R≥0 to control the strength of the EWC regulariza-
tion term. In the trivial case when λ = 0, there is
no programmed decrease in plasticity. We provide
the complete derivation of EWC in App. E.

5 Experimental Setup7

This section provides a comprehensive description
of the experimental setup for this project, includ-
ing: languages, datasets, model architectures, and
evaluation methods.

Languages. Our experiments consist of training
LMs from scratch on language pairs. In this work,
we rely on English (en) data for evaluation, as it
has a wealth of well-studied resources for assess-
ing language proficiency (see §5). Therefore, we
justify the selection of the other languages in this
study according to their relatedness to English.
To reduce the computational overhead, we restrict
most of our experiments to only two language
pairs: German–English and Finnish–English.
We choose these languages because they are both
(relatively) high-resource languages that are well-
represented in our chosen data domains. Further-
more, German (de) is in the same language fam-
ily as English (Indo-European/Germanic), while
Finnish (fi) is unrelated to both (Finno-Ugric).

Nonetheless, to improve the generalizability of
our results, we also run one experiment with an ex-
tended set of languages as L1, using English as L2

(see Experiment 4 in §6). We select languages from
various language families (Indo-European (IE) or
not) using different scripts (Latin (L) or not). To
represent the extreme endpoints, we also use a dif-
ferent corpus of English as the most closely related
L1, and a corpus in a programming language (Java)
as the least closely related L1. The complete list is
as follows (from most to least related):

• Same language: English2 (en2)
• Germanic: German (de), Dutch (nl)
• IE, L: Spanish (es), Polish (pl)
• IE, Non-L: Greek (el), Russian (ru)
• Non-IE, L: Finnish (fi), Turkish (tr)
• Non-IE, Non-L: Arabic (ar), Korean (ko)
• Programming language: Java (java)

Datasets. Ideally, we would train on data that
closely resembles the kinds of language children
encounter during language acquisition. This
typically involves natural speech and narratives.
Unfortunately, there are no existing datasets in
any language that are fully representative of the
type and volume of language input a child is

7The code is released at https://github.com/
iconstantinescu/lm-critical-period.

https://github.com/iconstantinescu/lm-critical-period
https://github.com/iconstantinescu/lm-critical-period


exposed to during learning, let alone in a variety
of languages. As a consequence, in this work,
we construct a customized mix of multilingual
training data sourced from three complementary
domains: spoken, literature and non-fiction.
We select the OpenSubtitles (Lison and Tiede-
mann, 2016) corpus for the spoken domain,
the Gutenberg (Gerlach and Font-Clos, 2020)
collection for literature, and the Wikipedia content
for non-fiction.8 While these choices of datasets
are not fully developmentally plausible, we judge
them to have a good balance of diversity, quality,
and quantity among the limited set of publicly
available multilingual datasets. See App. A for
preprocessing details and App. B for data statistics.

Models. We run our experiments with both
autoregressive and masked language models.
To represent these two categories, we consider
RoBERTa (Liu et al., 2019), an encoder-only
transformer trained to predict masked tokens,
and GPT-2 (Radford et al., 2019), a decoder-only
transformer trained to predict next tokens. We
rely on implementations from the HuggingFace
Transformers library (Wolf et al., 2020), namely
roberta-base with 125M parameters and gpt2
with 137M parameters. We choose these two
models due to their availability, size and scientific
relevance. These models are then trained according
to the conditions defined in §4.1. In all three
sequential conditions, L2 training starts from the
final L1 checkpoints, but with a new optimizer.

Hyper-parameters. We run a Bayesian hyper-
parameter search using the Weights & Biases
Sweeps API (Biewald, 2020) to identify good
model configurations for our training data and
methodology. We extract several model configu-
rations (see App. C) with which we run the various
experiments from §6.

EWC Implementation. We estimate the Fisher
Information Matrix according to Eq. (9), using
K = 10 samples per input. The model is trained
using the loss in Eq. (1).9 We choose the regulariza-
tion strength λ such that L1 performance matches
L2 performance at the end of training, which we

8To perform Experiment 4 with a broader range of lan-
guages, we exclude the Gutenberg dataset due to insufficient
data availability across languages. Further, for the special
Java (programming) language, we use an additional corpus
called The Stack (Kocetkov et al., 2023).

9While we use EWC’s loss for training, we still report the
cross-entropy loss for evaluations to be consistent.

identify experimentally to be λ = 20 for GPT-2
and λ = 150 for RoBERTa. We discuss the details
and reasoning behind the choice of λ in §6.

Evaluation. We use Perplexity (PPL), BLiMP
and GLUE to assess models’ language proficiency
throughout our experiments. To account for the dif-
ferences in tokenization across language pairs, we
report the PPL per character.10 BLiMP (Warstadt
et al., 2020) is a dataset of minimal pairs targeting
contrasts in acceptability for a variety of grammati-
cal phenomena in English. Evaluation is performed
in a zero-shot setting by comparing LM surprisal
on a grammatical and ungrammatical sentence.
GLUE and superGLUE11 are compilations of se-
mantic, commonsense, and syntactic tasks (Wang
et al., 2018, 2019a). Evaluation is performed by
fine-tuning all parameters of the model as well
as a randomly initialized classifier MLP. While
similar benchmarks (some even using the names
BLiMP and GLUE) are available for many of the
languages we study, these are inherently different
datasets which are not mutually comparable. Thus,
throughout this work, we use only English as
the evaluation language. This is far from optimal
from the perspective of linguistic representation,
but we prioritize controlled evaluation, rather than
obtaining a large set of exploratory results.

6 Experiments

This section describes our four experiments, de-
signed to provide evidence for answering the re-
search questions detailed in §4.

Experiment 1: Regular training.
L1 ∈ {de, fi}, L2 ∈ {en}, S = 600M, E = 6.

The goal of this setup is to study the CP for L2

learning, which relates to RQ 1 and RQ 3. We
run this experiment on both GPT-2 and RoBERTa
models, using German and Finnish data as a first
language and English data as a second language.
The dataset for each language has the same size
of 600 million tokens, a factor which was limited
by the availability of the Finnish data. The mod-
els are trained with a limited budget of 6 epochs
per language. This number has been empirically

10In addition, PPL per character being smaller in magnitude
than the more familiar PPL per token, differences between
PPL scores relative to the total magnitude are smaller as well.

11We henceforth use GLUE to refer to a combination of
tasks from GLUE and superGLUE (see App. D) implemented
in the BabyLM evaluation pipeline (Warstadt et al., 2023).
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Figure 2: L2 (en) results for regular training (6 epochs).
Results are aggregated across model configuration and
L1 (de and fi). Top: PPL per character on L2 (en)
during training on L2. Middle: Accuracy on BLiMP
during training on L2. Bottom: Performance on GLUE
at the end of training.

determined (after preliminary exploration) to pro-
vide a good trade-off between computational costs
and model performance (i.e., the models perform
sufficiently well after training for 6 epochs and
the learning slows down). Finally, in order to in-
troduce more variability and provide more result
samples, the trainings are run with three different
configurations (C1,C2,C3, see App. C).

We illustrate the results for this experiment in
Fig. 2. In general, the learning patterns through
epochs are similar across conditions (except for
INTERLEAVED), with variations observed mostly
in the final performance. As expected, the MONO-
LINGUAL performance is the best among all con-
ditions. We notice that the INTERLEAVED con-
dition performs slightly worse than the SEQUEN-
TIAL condition, although the difference is more
noticeable in RoBERTa models than in GPT-2 mod-
els. Both achieve lower scores than the MONOLIN-
GUAL training (the baseline for native-level lan-
guage proficiency). Results from the SEQUENTIAL-
INTERLEAVED condition differ based on the model
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reversed (6 + 6 epochs). Results are aggregated across
L2 (de and fi). Top: PPL per character on the L1

(en) validation set during training. Middle: Accuracy
on BLiMP during training. Bottom: Performance on
GLUE at the end of training on L1 and L2.

architecture. On GPT-2 it is worse compared to
SEQUENTIAL results (i.e., keeping L1 exposure
hinders L2 learning), while on RoBERTa it is bet-
ter (i.e., keeping L1 exposure helps L2 learning).
Lastly, the SEQUENTIAL-EWC condition shows
clear differences, with much worse L2 proficiency.
Unsurprisingly, the reduction in plasticity through
regularization has a significant (negative) impact
on L2’s learning outcome.

Experiment 2: Reversing the language order.
L1 ∈ {en}, L2 ∈ {de, fi}, S = 600M, E = 6.

The purpose of this experiment is to study the CP
for L1 attrition, which relates to RQ 2 and RQ 3.
The experimental setup differs from the previous
one mainly in that the order of the languages is
reversed: English is used as a first language and
German and Finnish as second languages. This
swap allows us to use all three evaluation bench-
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marks to track L1 performance across the entire
training process. Furthermore, each run is per-
formed with a single configuration (C1).

The results for this experiment are displayed
in Fig. 3. In general, we observe a smaller drop
in GLUE scores compared to BLiMP scores after
exposure to L1 ceases (i.e., comparing epoch 6 to
12). This is most probably caused by the concep-
tual difference between evaluations in a zero-shot
setting and evaluations that require fine-tuning.
When fine-tuning on GLUE, the LM is once again
allowed to learn from L1 data. In the MONOLIN-
GUAL condition, L1 performance keeps improving
until the end of training, even though it slows
down in the second stage. In the INTERLEAVED

condition, models reach the same level of L1 and
L2 proficiency (when comparing these results to
the ones from Fig. 2).12 The more notable result
comes from the SEQUENTIAL learning. In this con-
dition, LMs rapidly lose the knowledge acquired
from L1 learning after L2 exposure is started. The
final L1 perplexity values indicate that, in the end,
the LMs forget almost everything that they have
learned before. It looks like the second language
completely replaces the first one. However, the loss
of L1 is completely mitigated in the SEQUENTIAL-
INTERLEAVED condition. When L1 exposure is
prolonged without any reduction in plasticity, mod-

12Note that the dataset size is 2S in this condition, so the
model is only trained for E epochs.
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Figure 5: Trade-off between L1 and L2 performance
(CE) at the end of training as a function of λ (EWC
strength). Results are aggregated across L1 (de and fi).

els are able to retain all the prior L1 knowledge.13

When a computational regularization method is
introduced in the SEQUENTIAL-EWC condition, L1

knowledge is successfully preserved to a certain
degree. However, as we have seen from Fig. 2,
L2 learning is also harmed in this case. To explore
this trade-off, we vary the λ values and test the
models’ performance on both L1 and L2 at the end
of training. The results are illustrated in Fig. 5.
We see that the regularization strength λ highly
influences both L1 and L2 learning outcomes.
When high λ values are used (strong EWC
regularization), L1 knowledge can be predictably
maintained at the initial levels. However, L2

learning will be almost completely impaired. On
the other side, when lower λ values are used (weak

13RoBERTa continues learning L1 during the second stage.
We believe this is due to undertraining.
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EWC regularization), L2 learning is affected less,
but L1 will not be preserved. It is also noticeable
that in this case, there is a higher variance on the
final L1 outcomes. As mentioned in §5, we have
selected the λ values for all our experiments as
the point where L1 and L2 performance is roughly
equivalent (intersection lines are marked on the
plots). Thus, we do not favor either very strong
or very weak regularization, and also to match the
behavior exposed by the INTERLEAVED models.

Experiment 3: Training to convergence.
L1 ∈ {de, fi}, L2 ∈ {en}, S = 600M, E = 48.

This experiment is motivated by the observation
that CP effects can become stronger with a later age
of exposure. We extend the training time for each
language (thus postponing the start of L2 exposure)
to 48 epochs, allowing the model weights to better
converge. As this is more computationally demand-
ing, we do only one run per condition and we also
omit the SEQUENTIAL-INTERLEAVED condition.

The results are provided in Fig. 4, which shows
that the final results are more uniform across
the first three conditions, especially between
INTERLEAVED and SEQUENTIAL. We still see a
substantial loss in L1 performance in the SEQUEN-
TIAL condition, indicating that longer L1 training
does not lead to entrenchment, though these PPL
scores are for fi and de, and thus are not directly
comparable to the en from other experiments. The
performance of the INTERLEAVED setting shows

a slight improvement compared to regular training,
indicating that a longer training duration was
beneficial (and necessary for convergence). The
learning pattern for the SEQUENTIAL-EWC condi-
tion does not change, i.e., the final L2 performance
does not significantly improve with additional
training. It also appears the EWC regularization
does not simply slow down L2 learning, but rather
acts as a lower bound: L2 knowledge can never
improve past a certain point for a given choice of λ.

Experiment 4: Diversifying the language pool.
L1∈{ar, de, el, es, fi, ko, nl, pl, ru, tr, java},
L2 ∈ {en}, S = 100M, E = 6.

This experiment both addresses RQ 4 and provides
more diversity in the results; the latter is especially
important considering the limited selection of
languages for the previous experiments. The
main focus here is to find whether the choice
of languages or more concretely, the degree of
similarity between L1 and L2, has any impact on
the CP. For this, we consider a wider range of
languages based on their relatedness to English
(see §5). To accommodate for the increase in
computational demand, we consider only the
GPT-2 model architecture (with configuration
C5), we reduce the size of the training data to 100
million tokens, we only train with English as L2,
and we only run PPL and BLiMP evaluations.

We present the findings in Fig. 6. Considering
L2 PPL, we find the expected pattern, i.e., PPL



generally increases (gets worse) when L1 is less
closely related to it. However, the effect size is
quite small (hence we plot the difference with re-
spect to MONOLINGUAL condition): only 0.1-0.3 in
most cases, while the total PPL ranges from about
2.3-2.5. However, the BLiMP results do not sup-
port the same conclusion. Mostly, BLiMP scores
vary seemingly at random, and indeed these dif-
ferences could reflect random noise due to model
initialization. As expected, L2 performance on
BLiMP is greatest when L1 and L2 are just dif-
ferent corpora of English. But curiously, Java
pretraining aids BLiMP performance more than
most natural languages. The only condition where
we can make the strongest case for an effect is
SEQUENTIAL-EWC, which suggests that perhaps
relatedness effects exist at the beginning of transfer
but are wiped out by extensive L2 training.

7 Discussion

We first address our four research questions from
§4. We then explore our results’ implications for
the theoretical claims introduced in §3.

7.1 Research Questions
RQ 1. This RQ concerned L2 CP effects. We
find evidence against a CP for L2 learning in
language models. In experiments 1 and 3 (Figs. 2
and 4), we consistently find that final performance
in L2 is worse (or at least not different) in the
INTERLEAVED than in the SEQUENTIAL condition.
This is the opposite of the pattern found in humans,
where bilingual learners have greater proficiency
in L2 with earlier exposure to it (Johnson and
Newport, 1989). Comparing the INTERLEAVED

and MONOLINGUAL conditions also informs
this question. For humans, early L2 learners
resemble monolinguals in their L2 performance.
However, MONOLINGUAL models outperform
INTERLEAVED ones on all three metrics. Looking
at the entire learning trajectory, INTERLEAVED

models differ markedly from both MONOLINGUAL

and SEQUENTIAL models, showing more gradual
and delayed improvements.

RQ 2. This RQ concerned the CP for L1 attrition.
Humans show few signs of L1 attrition after the
CP, even if L1 exposure decreases or ceases. Our
results in experiment 2 provide strong evidence
against a similar phenomenon in typical LMs. In-
stead, we find that L1 performance worsens rapidly
and to a large degree in the SEQUENTIAL condition

after L1 exposure ceases. This is expected
given the susceptibility of neural networks to
catastrophic forgetting. The loss of L1 proficiency
is prevented by continuing L1 exposure in the
SEQUENTIAL-INTERLEAVED condition, but such
continued exposure is not necessary in humans.14

RQ 3. This RQ concerned the trade-off between
L2 learning and preventing L1 attrition when ex-
plicitly reducing plasticity partway during learning.
We find strong evidence for such a trade-off when
comparing the SEQUENTIAL-EWC condition to
the SEQUENTIAL condition. The value of λ we
selected preserved L1 performance substantially
compared to the SEQUENTIAL models, at the
cost of harming final performance in L2. The L2

learning curves also converge relatively quickly
when plasticity is reduced. Our exploration of
different values of λ (Fig. 5) shows that preserving
L1 to monolingual levels harms L2 acquisition by
roughly 1.5 nats of L2 performance, but we do not
directly compare grammatical performance of our
models to that of human late L2 learners. Thus,
our attempt at reverse engineering shows a broadly
human-like learning pattern when using EWC, but
we cannot say quantitatively and at a high level of
granularity whether the result is human-like.

RQ 4. This RQ concerned the impact of language
similarity on CP effects. Our results showed that
the language family of L1 and its script has an
impact on L2 learning in the expected way for only
a subset of evaluations. Based on earlier findings
from Papadimitriou and Jurafsky (2020) and Oba
et al. (2023), we had expected L2 performance
would be greater when L1 is more closely related.
However, only our results for PPL support this
prior conclusion. Our results for BLiMP do not
unless EWC is applied, suggesting that models are
ordinarily plastic enough to learn the grammar of
L2 regardless of relatedness, unless plasticity is
specifically reduced. We note that Papadimitriou
and Jurafsky (2020) reduce plasticity by freezing
the model weights before transferring to L2, but we
do not venture an explanation why Oba et al. (2023)
seemingly find models to be less plastic than we do.

7.2 Theoretical Implications

Our results show that CP effects are not naturally
arising in LMs in a typical training regime. At the

14This ignores self-talk as a potential source of L1 exposure;
self-talk may continue even if external L1 exposure ceases.



same time, we are able to suggest a methodology
to reverse engineer human-like learning patterns
by artificially reducing plasticity later in training.
As discussed in Section 3, results like these are
relevant to certain specific claims in the critical
period literature. Specifically, they refute the
strong experiential claim, which states that all
successful learning algorithms will show CP
effects, and they are consistent with (but do not
provide strong evidence for) the strong innate
claim, which states that innate maturational stages
are necessary to produce CP effects.

The strong experiential claim incorrectly pre-
dicts that our LMs will naturally show CP effects.
This may come as a surprise, given this claim was
based on previous studies on connectionist mod-
els finding evidence for the phenomenon of en-
trenchment (Munro, 1986; Ellis and Lambon Ralph,
2000). One explanation for this discrepancy in re-
sults is the difference in models’ capacity. These
earlier works trained extremely small models by
today’s standards, whereas our LMs may be over-
parameterized and therefore have sufficient capac-
ity to train to convergence without entrenchment.

On the other hand, the strong innate claim cor-
rectly predicts that our LMs will not show CP ef-
fects, unless we introduce an innate loss in plas-
ticity. Our introduction of EWC part-way through
training is akin to an innate loss in plasticity. How-
ever, our experiments are not strong evidence either
that the strong innate claim is correct or that EWC
is a plausible algorithmic mechanism underlying
the loss in plasticity in humans. The possibilities
remain that other statistical learners will show CP
effects as a natural consequence of experience, and
that humans could be one such learner.

Finally, many scholars of human development
advocate for a complex explanation of CP effects
involving both innate and experiential mechanisms
(e.g., Newport, 1990; Thiessen et al., 2016; Sin-
gleton, 2005). We consider this nuanced view to
be likely correct, but our results suggest that the
role of statistical learning should not be assumed or
overstated without evidence from humans or more
cognitively plausible models.

7.3 Limitations and Future Work

From a Bayesian epistemological point of view, re-
sults from GPT-2 and RoBERTa should affect our
priors about general learners and humans in some
ways, but Transformer LMs are inherently limited

as models of human learners. Assuming a sort
of Copernican Principle for cognitive modeling,
humans and LMs should both be unextraordinary
relative to the theoretical class of language learners.
So without other evidence or a priori reasoning,
we should assume they share properties: i.e., the
property that we identified in LMs that the ordinary
mechanism of learning fails to lead to CP effects.
However, there are many differences that could lead
us a priori to hypothesize differences in how hu-
mans and LMs learn. More generalizable evidence
could be obtained by considering more cognitively-
inspired models and learning algorithms, and learn-
ing environments drawing on more developmen-
tally plausible linguistic data and multimodal in-
put (Warstadt and Bowman, 2022). For those who
want to defend the position that CP effects fall out
in humans—but not LMs—from ordinary learn-
ing, these or other differences must be identified
as the cause. Our experiments seek a compromise
given today’s resources by choosing architectures
and procedures that maximize human-like learning
outcomes, while still using a transcribed-speech
training corpus and human-scale data. Future work
should revisit this compromise as better resources
for cognitive modeling are developed.

One caveat to the rejection of strong experiential
claim is that the claim only applies to learners that
adequately acquire L1. While this condition is not
rigorously defined, one might argue our models
do not qualify. For example, our GPT-2 models
in the SEQUENTIAL and INTERLEAVED conditions
achieve 75± 1% accuracy on BLiMP. This is sub-
stantially better than chance (50%) and is com-
parable to the strongest baseline model from the
BabyLM Challenge (Warstadt et al., 2023), but
falls well below human agreement with BLiMP
(89%). No LMs currently achieve fully human-like
performance on BLiMP, and higher performance
generally requires compromising on developmen-
tal plausibility, though more data-efficient archi-
tectures exist (Samuel et al., 2023; Warstadt et al.,
2023). We do not expect our results to be quali-
tatively different if our experiments are run with
more effective Transformer-based LMs, but this is
something future work should confirm.

We must also acknowledge the theoretical im-
plications of learning rate decay and the optimizer.
The learning rate impacts the magnitude of changes
to model weights during training, and so it is di-
rectly related to the plasticity of the model. Ex-



tensive work in machine learning has found that
the learning rate should decrease in the later stages
of training (see, e.g., Gotmare et al., 2019). Thus,
one could take this as evidence that a predeter-
mined loss in plasticity is necessary for successful
learning, though the implementation may not nec-
essarily result in CP effects. As our goal with our
experiments was to reproduce typical LM train-
ing pipelines, we reduce the learning rate in all
conditions, but we also restart the learning rate in
the sequential conditions at the beginning of L2

training, as is standard in fine-tuning (Howard and
Ruder, 2018). However, this may be interpreted as
artificially increasing the plasticity of our models,
which could contribute to the lack of CP effects.
Learning rate schedules, their interaction with suc-
cessful learning, and their impact on critical periods
should be the focus of future work.

We identify several additional avenues for fu-
ture work: First, the regularization method we use,
EWC (Kirkpatrick et al., 2017), can be viewed only
as a computational-level model of an innate bio-
logical CP; future work could consider other regu-
larizers such as Memory Aware Synapsis (Aljundi
et al., 2018) that arguably model what happens in
humans at the algorithmic level. Second, there is
neurolinguistic evidence for some degree of mod-
ularity in how human bilinguals process different
languages (Hernandez et al., 2005), but our models
use completely shared parameters for languages.
Future work can explore LM architectures that en-
courage or directly build in modularity, such as
XLM (Conneau and Lample, 2019) or X-MOD
(Pfeiffer et al., 2022). Third, our models learn in
a text-only environment, but for humans L1 and
L2 are both grounded in the same non-linguistic
stimuli. Training multimodal models can lead to
more realistic simulations, as well as enable testing
of CP effects for L1 learning, which requires non-
linguistic experience to precede L1 acquisition.

8 Conclusion

There are many obvious ways in which LMs dif-
fer from humans when learning language. Our
work reveals another important point of divergence,
namely that LMs remain far more plastic later into
the learning process than human learners. Even
though humans and models differ substantially,
comparing the learning trajectories of human learn-
ers to those of computational ones tells us some-
thing about humans: Those features that we do

share are more likely to be natural properties of
language learning, while those that we do not are
more likely to require idiosyncratic innate mecha-
nisms. Our results provide strong evidence against
the hypothesis that CP effects are necessarily in-
duced solely by experience, and they are consistent
with, but only provide weak evidence in favor of,
the view that innate mechanisms are necessary to
explain CP phenomena. It will be important to
replicate these results in other artificial learners, in-
cluding ones which resemble humans more closely
in other respects. Our study thus constitutes early
progress towards integrating modern LMs into the
study of human language acquisition.
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Kyunghyun Cho, and Iryna Gurevych. 2020.
AdapterHub: A framework for adapting Trans-
formers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 46–54.

Steven Pinker. 1994. The Language Instinct.
William Morrow and Company.

Jesus Pujol, Carles Soriano-Mas, Hector Ortiz,
Nuria Sebastián-Gallés, Josep M. Losilla, and
Joan Deus. 2006. Myelination of language-
related areas in the developing brain. Neurology,
66(3):339–343.

Friedemann Pulvermüller and John H. Schumann.
1994. Neurobiological mechanisms of language
acquisition. Language Learning, 44(4):681–
734.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learn-
ers. Technical report, OpenAI.

https://dl.acm.org/doi/10.5555/104339.104351
https://doi.org/10.1207/S15516709COG1401_2
https://doi.org/10.1207/S15516709COG1401_2
https://doi.org/10.18653/v1/2023.findings-acl.856
https://doi.org/10.18653/v1/2023.findings-acl.856
https://benjamins.com/catalog/sibil.33.11pal
https://benjamins.com/catalog/sibil.33.11pal
https://doi.org/10.1093/cercor/13.2.155
https://doi.org/10.1093/cercor/13.2.155
https://doi.org/10.1093/cercor/13.2.155
https://proceedings.neurips.cc/paper/2020/hash/2f3bbb9730639e9ea48f309d9a79ff01-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f3bbb9730639e9ea48f309d9a79ff01-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2f3bbb9730639e9ea48f309d9a79ff01-Abstract.html
https://doi.org/10.1126/science.1202529
https://doi.org/10.1126/science.1202529
https://doi.org/10.18653/v1/2020.emnlp-main.554
https://doi.org/10.18653/v1/2020.emnlp-main.554
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1093/brain/88.4.787
https://doi.org/10.1093/brain/88.4.787
https://doi.org/doi:10.1515/9781400854677
https://doi.org/doi:10.1515/9781400854677
https://doi.org/10.18653/V1/2022.NAACL-MAIN.255
https://doi.org/10.18653/V1/2022.NAACL-MAIN.255
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://en.wikipedia.org/wiki/The_Language_Instinct
https://doi.org/10.1212/01.wnl.0000201049.66073.8d
https://doi.org/10.1212/01.wnl.0000201049.66073.8d
https://doi.org/https://doi.org/10.1111/j.1467-1770.1994.tb00635.x
https://doi.org/https://doi.org/10.1111/j.1467-1770.1994.tb00635.x
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


Pranav Rajpurkar, Jian Zhang, Konstantin Lopy-
rev, and Percy Liang. 2016. SQuAD: 100,000+
questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
pages 2383–2392.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and
Erik Velldal. 2023. Trained on 100 million
words and still in shape: BERT meets British
National Corpus. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 1909–1929.

Jacquelyn Schachter. 1988. Second language ac-
quisition and its relationship to Universal Gram-
mar. Applied Linguistics, 9(3):219–235.

Mark S. Seidenberg and Jason D. Zevin. 2006.
Connectionist models in developmental cogni-
tive neuroscience: Critical periods and the para-
dox of success. In Yuko Munakata and Mark H
Johnson, editors, Processes of Change in Brain
and Cognitive Development, pages 585–612. Ox-
ford University Press.

David Singleton. 2005. The critical period hypoth-
esis: A coat of many colours. International Re-
view of Applied Linguistics in Language Teach-
ing, 43(4):269–285.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642.

Erik D. Thiessen, Sandrine Girard, and Lucy C. Er-
ickson. 2016. Statistical learning and the critical
period: How a continuous learning mechanism
can give rise to discontinuous learning. WIREs
Cognitive Science, 7(4):276–288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. 2019a.
SuperGLUE: A stickier benchmark for general-
purpose language understanding systems. In
Advances in Neural Information Processing Sys-
tems 32, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.

2018. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding.
In Proceedings of the Workshop: Analyzing and
Interpreting Neural Networks for NLP, pages
353–355.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019b. GLUE: A multi-task benchmark and
analysis platform for natural language under-
standing. In 7th International Conference on
Learning Representations.

Alex Warstadt and Samuel R. Bowman. 2022.
What artificial neural networks can tell us about
human language acquisition. In Shalom Lappin
and Jean-Philippe Bernardy, editors, Algebraic
Structures in Natural Language, pages 17–60.
CRC Press.

Alex Warstadt, Aaron Mueller, Leshem Choshen,
Ethan Wilcox, Chengxu Zhuang, Juan Ciro,
Rafael Mosquera, Bhargavi Paranjabe, Adina
Williams, Tal Linzen, and Ryan Cotterell. 2023.
Findings of the BabyLM challenge: Sample-
efficient pretraining on developmentally plau-
sible corpora. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computa-
tional Natural Language Learning, pages 1–34.

Alex Warstadt, Alicia Parrish, Haokun Liu, An-
had Mohananey, Wei Peng, Sheng-Fu Wang,
and Samuel R. Bowman. 2020. BLiMP: The
benchmark of linguistic minimal pairs for En-
glish. Transactions of the Association for Com-
putational Linguistics, 8:377–392.

Alex Warstadt, Amanpreet Singh, and Samuel R.
Bowman. 2019. Neural network acceptability
judgments. Transactions of the Association for
Computational Linguistics, 7:625–641.

Ethan Gotlieb Wilcox, Richard Futrell, and Roger
Levy. 2023. Using computational models to test
syntactic learnability. Linguistic Inquiry, pages
1–44.

Adina Williams, Nikita Nangia, and Samuel R.
Bowman. 2018. A broad-coverage challenge
corpus for sentence understanding through infer-
ence. In Proceedings of the 2018 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies, pages 1112–1122.

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.146
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.146
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.146
https://doi.org/10.1093/applin/9.3.219
https://doi.org/10.1093/applin/9.3.219
https://doi.org/10.1093/applin/9.3.219
https://academic.oup.com/book/54488/chapter/422571818
https://academic.oup.com/book/54488/chapter/422571818
https://academic.oup.com/book/54488/chapter/422571818
https://doi.org/10.1515/iral.2005.43.4.269
https://doi.org/10.1515/iral.2005.43.4.269
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/https://doi.org/10.1002/wcs.1394
https://doi.org/https://doi.org/10.1002/wcs.1394
https://doi.org/https://doi.org/10.1002/wcs.1394
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.18653/V1/W18-5446
https://doi.org/10.18653/V1/W18-5446
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003205388-2/artificial-neural-networks-tell-us-human-language-acquisition-alex-warstadt-samuel-bowman?context=ubx&refId=edb5fbcb-5a2d-43b7-ab59-a95593d6b1e5
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003205388-2/artificial-neural-networks-tell-us-human-language-acquisition-alex-warstadt-samuel-bowman?context=ubx&refId=edb5fbcb-5a2d-43b7-ab59-a95593d6b1e5
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/TACL_A_00290
https://doi.org/10.1162/TACL_A_00290
https://doi.org/10.1162/ling_a_00491
https://doi.org/10.1162/ling_a_00491
https://doi.org/10.18653/V1/N18-1101
https://doi.org/10.18653/V1/N18-1101
https://doi.org/10.18653/V1/N18-1101


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demon-
strations, pages 38–45.

Jason D. Zevin and Mark S. Seidenberg. 2002.
Age of acquisition effects in word reading and
other tasks. Journal of Memory and Language,
47(1):1–29.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need
billions of words of pretraining data? In Pro-
ceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing, pages 1112–1125.

https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6
https://www.sciencedirect.com/science/article/pii/S0749596X01928347
https://www.sciencedirect.com/science/article/pii/S0749596X01928347
https://doi.org/10.18653/V1/2021.ACL-LONG.90
https://doi.org/10.18653/V1/2021.ACL-LONG.90


A Data Preprocessing

Cleaning. We remove extra spaces, non-breaking
spaces and dataset-specific characters such as dia-
logue lines and music symbols (in OpenSubtitles)
and paragraph delimiters (in Gutenberg). For the
Java code extracted from The Stack, we remove
all docstrings and comments.

Unifying. We downsample the original data
sources to align the data quantity and distribution
of domains for all languages. A fixed sampling
ratio of 2 : 1 : 1 is established for OpenSubtitles :
Gutenberg : Wikipedia in order to ensure an even
distribution of transcribed and written text within
the training data. As mentioned previously, there is
an exception to this rule for Experiment 4, where
only data from OpenSubtitles and Wikipedia is
sampled in equal parts. To mix the data from differ-
ent domains while limiting the number of context
breaks, large blocks of 10000 lines are uniformly
sampled from each dataset, and then randomly shuf-
fled. The resulting unified dataset is then split as
follows: 83% train, 8.5% validation, and 8.5% test.

Interleaving. Interleaved datasets are created for
each language pair (en plus a second language).
The same blocks of texts sampled in the previous
unifying step are simply interleaved while main-
taining their ordering (e.g., L1 block 1, L2 block
1, L1 block 2, L2 block 2, etc.). In this way, the
data from the two languages is presented in the
same order to the model during the INTERLEAVED

training as it is during the SEQUENTIAL training.

Size alignment. We uniformize the training
dataset sizes across languages. We quantify dataset
sizes in terms of the number of tokens obtained
using a BPE tokenizer; see section App. A. Beyond
the fact that tokens are the true unit of input to the
LMs, BPE is a compression algorithm, so while the
amount of information per word might be highly
language-specific, the amount of information per
token is more comparable across languages.

Tokenization. We train bilingual byte-Level BPE
tokenizers.15 Given the size of our training datasets,
we set a vocabulary size of 32,000 and a minimum
frequency of 2. When tokenizing the training data,
all the text lines are concatenated and the resulting
tokenized dataset is split into fixed-size blocks of

15With the exception of the MONOLINGUAL condition,
which uses a monolingual byte-Level BPE tokenizer instead.

512 tokens which are used as input for both GPT-2
and RoBERTa.

B Data

Dataset Lang. Size (GB) Lines (M) Words (M)

OpenSubtitles

ar 1.6 39 177
de 1.2 34 202
el 6.5 126 650
en 11.0 316 2112
es 6.4 213 1144
fi 1.4 45 191
ko 0.1 3 8
nl 3.1 105 600
pl 6.8 236 1055
ru 2.2 45 214
tr 5.1 173 698

Wikipedia

ar 2.1 8 209
de 6.4 25 931
el 1.1 2 92
en 15.0 60 2543
es 4.5 21 767
fi 0.8 3 93
ko 0.8 5 85
nl 1.9 12 303
pl 2.0 11 275
ru 7.4 24 604
tr 0.7 4 86

Gutenberg
en 19.0 59 3417
de 0.6 2 103
fi 0.7 3 92

The Stack java 3.8 110 337

Table 1: Statistics of the collected data

Train Dataset Size (GB) Words (M) Tokens (M)

en 2.2 408 601
en2 2.2 402 592
de 2.4 378 600
fi 2.4 311 596

Table 2: Main experiments’ dataset sizes

Train Dataset Size (GB) Words (M) Tokens (M)

ar 0.6 62 104
de 0.4 63 100
el 0.7 61 102
en 0.4 68 99
en2 0.4 66 96
es 0.4 66 100
fi 0.4 51 100
ko 0.5 47 102
nl 0.4 65 98
pl 0.4 57 104
ru 0.6 54 99
tr 0.4 55 101
java 0.3 30 99

Table 3: Experiment 4 dataset sizes



C Hyperparameters

Hyperarameter C1 C2 C3 C4 C5

Learning rate (×10−3) 1.00 1.00 8.00 1.00 1.00

Warmup ratio 7% 9% 10% 7% 7%

Gradient accum. steps 16 32 32 16 4

Table 4: Configurations for GPT-2 models.

Hyperarameter C1 C2 C3 C4 C5

Learning rate (×10−4) 4.75 3.88 3.90 3.00 4.00

Warmup ratio 5% 10% 9% 1% 1%

Gradient accum. steps 32 32 16 32 1

MLM probability 0.3 0.15 0.3 0.3 0.3

Table 5: Configurations for RoBERTa models.

Value

Hyperparameter GPT-2 RoBERTa

n_head 12 12
n_layer 12 12
n_positions 1,024 512
n_embd 768 768
activation_function “gelu_new” “gelu”
optimizer “adamw_hf” “adamw_hf”
lr_scheduler “linear” “linear”
device_train_batch_size 4 8
adafactor False False
adam_beta1 0.9 0.9
adam_beta2 0.999 0.999
adam_epsilon 0.00000001 0.00000001
max_grad_norm 1 1
layer_norm_epsilon 0.00001 0.000000000001
weight_decay 0 0
dropout 0.1 0.1
fp16 True True

Table 6: Fixed hyperparameters for GPT-2 and
RoBERTa models.

D Evaluation Tasks

The BLiMP tasks that our models are evaluated on
are examplified in Tab. 7. The subset of GLUE16

tasks that our models are evaluated on are the fol-
lowing.

CoLA. The Corpus of Linguistic Acceptability
consists of around 10K English sentences gathered
from published linguistics literature that have
been annotated by experts for binary acceptability
(grammaticality) judgements (Warstadt et al.,
2019). The evaluation metric is Matthews
Correlation Coefficient.

SST-2. The Binary Stanford Sentiment Treebank
includes 215K unique phrases extracted from the
parse trees of movie reviews sentences and that
have been fully labeled as having either a positive
or negative sentiment by three human judges
(Socher et al., 2013). The evaluation metric is
Accuracy.

MRPC. The Microsoft Research Paraphrase Cor-
pus contains 5,800 pairs of sentences sourced from
a large corpus of news data, each labeled with a
binary judgment indicating whether the pair rep-
resents a paraphrase or not (Dolan and Brockett,
2005). The evaluation metric is F1 score.

QQP. The Quora Question Pairs is a corpus of
over 400K question pairs from the Quora website
which are annotated with a binary value denoting
whether the questions are paraphrases of each other.
The evaluation metric is F1 score.

MNLI. The Multi-Genre Natural Language In-
ference is a crowd-sourced collection of 433K sen-
tence pairs annotated with textual entailment infor-
mation, covering a wide range of genres of both
spoken and written text (Williams et al., 2018). The
evaluation metric is Accuracy.

MNLI-MM. The Multi-Genre Natural Language
Inference Mismatched dataset is the mismatched
version of the MNLI (matched) dataset, where the
dev and test sets use out-of-domain data that does
not closely resemble anything seen at training time
(Williams et al., 2018). The evaluation metric is
Accuracy.

QNLI. The Question-answering Natural Lan-
guage Inference dataset is automatically derived
from the Stanford Question Answering Dataset

16https://gluebenchmark.com

https://gluebenchmark.com


Field Phenomenon Acceptable example Unacceptable example

Morphology

Anaphor Agreement Many girls insulted themselves. Many girls insulted herself.

Determiner-Noun Agreement Rachelle had bought that chair. Rachelle had bought that chairs.

Irregular Forms Aaron broke the unicycle. Aaron broken the unicycle.

Subject-Verb Agreement These casseroles disgust Kayla. These casseroles disgusts Kayla.

Syntax

Argument Structure Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.

Ellipsis Jill hides one orange chair and
Tammy hides more.

Jill hides one chair and Tammy
hides more orange.

Filler-Gap Brett knew what many waiters find. Brett knew that many waiters find.

Island Effects Which bikes is John fixing? Which is John fixing bikes?

Subject-Auxiliary Inversion Was the steak he is cooking fresh? Is the steak he cooking was fresh?

Semantics

NPI Licensing The truck has clearly tipped over. The truck has ever tipped over.

Quantifiers No boy knew fewer than six guys. No boy knew at most six guys.

Hypernym He has a chihuahua, so he has a dog. He has a chihuahua, so he has a cat.

Syntax & Semantics
Binding Carlos said that Lori helped him. Carlos said that Lori helped himself.

Control/Raising There was bound to be a fish escaping. There was unable to be a fish escaping.

Discourse

Q-A Congruence (easy) A: Who is sleeping? B: David. A: Who is sleeping? B: Eggs.

Q-A Congruence (tricky) A: Who studies? B: David. A: Who studies? B: Science.

Turn-taking A: Did you arrive? B: No, we didn’t. A: Did you arrive? B: No, you didn’t.

Table 7: Examples of BLiMP minimal pairs (Warstadt et al., 2020).

v1.1 (SQuAD) (Rajpurkar et al., 2016). It con-
sists of question–paragraph pairs with one sentence
in each paragraph, sourced from Wikipedia, con-
taining the answer to the corresponding question,
written by an annotator (Wang et al., 2019b). The
evaluation metric is Accuracy.

RTE. The Recognizing Textual Entailment
dataset is compiled from a series of textual entail-
ment challenges: RTE1 (Dagan et al., 2005), RTE2
(Bar-Haim et al., 2006), RTE3 (Giampiccolo et al.,
2007), and RTE5 (Bentivogli et al., 2009). The
task requires to recognize whether the meaning of
a text fragment can be inferred from the other text.
The evaluation metric is Accuracy.

The subset of SuperGLUE17 tasks that the models
are evaluated on are the following.

BoolQ. The Boolean Questions dataset is a read-
ing comprehension dataset that consists of almost
16K naturally occurring yes–no questions gener-
ated in unprompted and unconstrained settings

17https://super.gluebenchmark.com

(Clark et al., 2019). The evaluation metric is Accu-
racy.

MultiRC. The Multi-Sentence Reading Compre-
hension dataset contains around 10K questions that
can be answered by combining information from a
multi-sentence paragraph (Khashabi et al., 2018).
The evaluation metric is F1 score.

WSC. The Winograd Schema Challenge dataset
is a corpus of sentence pairs that differ in only one
or two words and contain an ambiguity that can
be resolved using world knowledge and reasoning
(Levesque et al., 2011). The evaluation metric is
Accuracy.

https://super.gluebenchmark.com


E Derivation of EWC Regularization for Language Modeling

Let Σ be an alphabet; furthermore, define Σ
def
= Σ ∪ {EOS}. We assume we have access to a collection

of strings DL1 = {x(n)}Nn=1 ⊂ Σ∗ in L1 and another DL2 = {y(m)}Mm=1 ⊂ Σ∗ in L2. Additionally, let
Θ ⊂ Rd be a compact set of possible parameters. We take a Bayesian approach and construct a posterior
density over possible parameter vectors θ. Let π(θ) be a prior density over Θ, and consider the following
likelihood

p(DL1 ,DL2 | θ) =
N∏

n=1

p(x(n) | θ)︸ ︷︷ ︸
def
=p(DL1

|θ)

M∏
m=1

p(y(m) | θ)︸ ︷︷ ︸
def
=p(DL2

|θ)

(2a)

=

N∏
n=1

Tn∏
t=1

p(EOS | x(n),θ)p(x
(n)
t | x(n)

<t ,θ)

M∏
m=1

Tm∏
t=1

p(EOS | y(m),θ)p(y
(m)
t | y(m)

<t ,θ), (2b)

where, as the notation states, our model assumes conditional independence between data instances given
the model’s parameters. Note that our language model p(· | θ) is unusual in that it generates sentences
from both L1 and L2. By Bayes’ rule, we have the following posterior

p(θ | DL1 ,DL2) ∝ p(DL1 ,DL2 | θ)π(θ) (3a)

= p(DL2 | θ)p(DL1 | θ)π(θ) (3b)

∝ p(DL2 | θ)p(θ | DL1), (3c)

where the transition from Eq. (3a) to Eq. (3b) follows from the conditional independence assumption of
Eq. (2). There is no known general-purpose algorithm to compute p(θ | DL1 ,DL2). Thus, we construct
a Gaussian approximation of p(θ | DL1) by computing a second-order Taylor approximation to the
log-likelihood around the likelihood mode, i.e.,

θ∗
L1

= argmax
θ∈Θ

log p(DL1 | θ). (4)

Applying the Taylor approximation yields

log p(DL1 | θ) ≈ log p(DL1 | θ∗
L1
) +

1

2
(θ − θ∗

L1
)⊺∇2

θ log p(DL1 | θ∗
L1
)(θ − θ∗

L1
). (5)

We have omitted the first term in the Taylor expansion since it is zero precisely because we have expanded
log p(DL1 | θ) around a local optimum. If the prior is set to be a zero-centered, spherical Gaussian with
variance σ2, i.e.,

π(θ) ∝ exp− 1

2σ2
θ⊺θ, (6)

applying Bayes’ rule gives:

log p(θ | DL1) = log p(DL1 | θ) + log π(θ)− log p(DL1). (7)

As log p(DL1) is constant with respect to θ, it does not influence the optimization problem. By replacing
log p(DL1 | θ) with the approximation from Eq. (5) we obtain:18

logp(θ | DL1) ≈
1

2
(θ − θ∗

L1
)⊺∇2

θ log p(DL1 | θ∗
L1
)(θ − θ∗

L1
)− 1

2σ2
θ⊺θ (8a)

18Note that log p(DL1 | θ∗
L1
) in Eq. (5) is also constant w.r.t. θ, so we do not add it.



=
1

2
(θ − θ∗

L1
)⊺

(
N∑

n=1

(
∇2

θ log p(EOS | x(n),θ∗
L1
) +

Tn∑
t=1

∇2
θ log p(x

(n)
t | x(n)

<t ,θ
∗
L1
)

))
(θ − θ∗

L1
)

− 1

2σ2
θ⊺θ (8b)

≈ −1

2
(θ − θ∗

L1
)⊺

(
N∑

n=1

Tn+1∑
t=1

E
x∼p(·|x<t,θ

∗
L1

)
∇2

θ − log p(x | x(n)
<t ,θ

∗
L1
)

)
(θ − θ∗

L1
)− 1

2σ2
θ⊺θ,

(8c)

where the last approximation replaces ∇2
θ log p(x

(n)
t | x

(n)
<t ,θ

∗
L1
) with its expectation

Ex∼p(·|x<t,θ
∗
L1

)∇2
θ log p(x | x(n)

<t ,θ
∗
L1
) and performs a sign manipulation.

A Fast Approximation. Exact computation of the matrix Ex∼p(·|x<t,θ
∗
L1

)∇2
θ − log p(x | x(n)

<t ,θ
∗
L1
)

is impractical for multiple reasons. First, it requires second-order automatic differentiation, which is
relatively expensive and not a standard feature in common automatic differentiation toolkits, e.g., PyTorch
(Paszke et al., 2019). Second, recall that p(· | x<t,θ

∗
L1
) is the next-symbol distribution of the language

model, i.e., a distribution over Σ, so Ex∼p(·|x<t,θ
∗
L1

)∇2
θ − log p(x | x(n)

<t ,θ
∗
L1
) could be computed in

O(|Σ|) time. While linear, Σ is often large in practice in modern language models. Thirdly, the matrix
contains O(d2) unique entries.19 When d is large, as it is in our case, we cannot compute all d2 entries
easily. A classic identity involving the Fisher information matrix from Bickel and Doksum (2001, pg.
185) (see also Kunstner et al. (2019, Eq. 4)) allows us to derive the following approximation:

N∑
n=1

Tn+1∑
t=1

E
x∼p(·|x<t,θ

∗
L1

)
∇2

θ − log p(x | x(n)
<t ,θ

∗
L1
)

≈
N∑

n=1

Tn+1∑
t=1

E
x∼p(·|x<t,θ

∗
L1

)
∇θ log p(x | x(n)

<t ,θ
∗
L1
)∇θ log p(x | x(n)

<t ,θ
∗
L1
)⊺ (9a)

≈
N∑

n=1

Tn+1∑
t=1

1

K

K∑
k=1

∇θ log p(x
(k) | x(n)

<t ,θ
∗
L1
)∇θ log p(x

(k) | x(n)
<t ,θ

∗
L1
)⊺ (9b)

def
= F̃θ∗

L1
(9c)

Eq. (9b) is a standard Monte Carlo approximation where x(k) ∼ p(· | x(n)
<t ,θ

∗
L1
). When K ≪ |Σ|, the

sample-based approximation results in a significant speed-up. , to avoid O(d2) computation time, we
only approximate the diagonal of F̃θ∗

L1
, which has O(d) entries.

A Simple Regularizer. Synthesizing the above, we arrive at a simple regularizer that should promote a
language model, previously trained on L1 data, to retain its knowledge during training on L2 data

R(θ) =
1

2

d∑
i=1

(
F̃θ∗

L1

)
ii
· (θ − θ∗

L1
)2i︸ ︷︷ ︸

REWC

+
1

2σ2
θ⊺θ︸ ︷︷ ︸

RL2

(10)

The second term corresponds exactly to the well-known L2 regularization term resulting from the prior
over the parameters θ. In practice, we generalize the coefficient 1

2 into a tunable regularization coefficient
λ and the coefficient 1

2σ2 into a tunable regularization coefficient µ. We tune λ on held-out data, but set
µ = 0 throughout the experiments and therefore omit it from the main text.20

19By Schwarz’s lemma, if a function is twice continuously differentiable, its Hessian is symmetric—hence, the big-O.
20Based on empirical observations this hyperparameter did not have an effect on the results.


